

Test Report No. 9-1531-R2B

EVALUATION OF LOWER AND UPPER RAIL ELEMENTS WITH MIDWEST GUARDRAIL SYSTEM TO ADDRESS MOTORCYCLE SAFETY

Sponsored by the

Motorcycle Safety Pooled Fund

and the

Texas Department of Transportation

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Roadside Safety & Physical Security
Texas A&M University System RELLIS Campus
Building 7091
1254 Avenue A
Bryan, TX 77807

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
FHWA/TX-24/9-1531-R2B		
4. Title and Subtitle		5. Report Date
EVALUATION OF LOWER AND	UPPER RAIL ELEMENTS	Submitted: December 2023
WITH MIDWEST GUARDRAIL S	YSTEM TO ADDRESS	6. Performing Organization Code
MOTORCYCLE SAFETY		
7. Author(s)		8. Performing Organization Report No.
Nathan D. Schulz, Roger Bligh, a	nd Brianna Bastin	Test Report No. 9-1531-R2B
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
Texas A&M Transportation Institu	ite Proving Ground	
The Texas A&M University Syste	m	11. Contract or Grant No.
College Station, Texas 77843-3135		Contract 9-1531
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Texas Department of Transportat	ion	Technical Report:
Research and Technology Impler	mentation Office	September 2023–November 2023
125 E. 11 th Street		14. Sponsoring Agency Code
Austin, TX 78701-2483		

15. Supplementary Notes

Project sponsored by the Texas Department of Transportation and the Federal Highway Administration.

Project Title: Development and Evaluation of Roadside Safety Systems for Motorcyclists

16. Abstract

The purpose of the tests reported herein was to assess the performance of the Enhanced Motorcycle MGS according to the safety-performance evaluation guidelines included in the second edition of the American Association of State Highway and Transportation Officials *Manual for Assessing Safety Hardware (MASH)*. The crash tests were performed in accordance with *MASH* Test Level 3 (TL-3):

- 1. **MASH** Test 3-10: An 1100C vehicle weighing 2420 lb impacting the longitudinal barriers at 25 degrees while traveling at 62 mi/h.
- 2. **MASH** Test 3-11: A 2270P vehicle weighing 5000 lb impacting the longitudinal barriers at 25 degrees while traveling at 62 mi/h.

This report provides details on the Enhanced Motorcycle MGS, the crash tests and results, and the performance assessment of the Enhanced Motorcycle MGS for *MASH* TL-3 longitudinal barriers evaluation criteria.

The Enhanced Motorcycle MGS met the performance criteria for *MASH* TL-3 longitudinal barriers.

17. Key Words Guardrail, MASH, Motorcycle, Cr. Post	ash Test, Steel	the public th	ns. This documen rough NTIS: chnical Informatior Virginia	
19. Security Classification. (of this report) Unclassified	20. Security Classificati Unclassified	on. (of this page)	21. No. of Pages 108	22. Price

Evaluation of Lower and Upper Rail Elements with Midwest Guardrail System to Address Motorcycle Safety

by

Nathan D. Schulz, Ph.D. Associate Research Scientist Texas A&M Transportation Institute

Roger Bligh, Ph.D., P.E. Senior Research Scientist Texas A&M Transportation Institute

and

Brianna E. Bastin Research Assistant Texas A&M Transportation Institute

> Report No. 9-1531-R2B Contract No.: 9-1531

> > Sponsored by the

Motorcycle Safety Pooled Fund

and the

Texas Department of Transportation

Submitted: December 2023

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Texas Department of Transportation, The Texas A&M University System, or the Texas A&M Transportation Institute (TTI). This report does not constitute a standard, specification, or regulation. In addition, the above-listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and American Association of State Highway and Transportation Officials *Manual for Assessing Safety Hardware*, Second Edition, guidelines and standards.

The Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab will promptly disclose such error to the Texas Department of Transportation, and all parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract will not constitute a breach of the testing contract.

THE TTI LAB WILL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY THE ROADSIDE POOLED FUND GROUP OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

ACKNOWLEDGEMENTS

This research project was performed under a pooled fund program, TPF-5(482), between the following States and Agencies. The authors acknowledge and appreciate their guidance and assistance.

Project Committee

COLORADO

David Kosmiski, P.E.

Miscellaneous (M) Standards Engineer Division of Project Support, Construction Engineering Services (CES) Branch Colorado Dept. of Transportation (CDOT) 4201 E Arkansas Ave, 4th Floor Denver, CO 80222 303-757-9021 david.kosmiski@state.co.us

GEORGIA

Ron Knezevich

State Safety Engineering Supervisor Georgia Depart. of Transportation Office of Traffic Operations 935 United Avenue SE Atlanta, GA 30316 (404) 635-2824 RKnezevich@dot.ga.gov

ILLINOIS

Martha A. Brown, P.E.

Safety Design Bureau Chief Bureau of Safety Programs and Engineering Illinois Depart. of Transportation 2300 Dirksen Parkway, Room 005 Springfield, IL 62764 (217) 785-3034 Martha.A.Brown@illinois.gov

LOUISIANA

Carl Gaudry

Bridge Design Manager
Bridge & Structural Design Section
Louisiana Department of Transportation &
Development
Carl.Gaudry@la.gov

MASSACHUSETTS

James Danila

State Traffic Engineer (857) 368-9640 James.danilla@state.ma.us

TEXAS

Chris Glancy

Research Portfolio Manager Texas Department of Transportation 125 East 11th Street Austin, TX 78701-2483 (512) 952-2645 Chris.Glancy@txdot.gov

Ken Mora

Roadway Design Section Director Design Division Texas Department of Transportation 125 East 11th Street Austin, TX 78701-2483 (512) 416-2678 kenneth.mora@txdot.gov

UTAH

Shawn Debenham

Traffic and Safety Division
Utah Depart. of Transportation
4501 South 2700 West
PO Box 143200
Salt Lake City UT 84114-3200
(801) 965-4590
sdebenham@utah.gov

REPORT AUTHORIZATION

REPORT REVIEWED BY:

Glen Schroeler

Glenn Schroeder, Research Specialist Drafting & Reporting

Adam Mayer, Research Specialist Construction

Robert Kocman, Research Specialist Mechanical Instrumentation

Ken Reeves, Research Specialist Electronics Instrumentation

Richard Badillo, Research Specialist Photographic Instrumentation

William J. L. Schroeder, Research Engineering Associate, Research Evaluation and Reporting

Bill L. Griffith, Research Specialist Deputy Quality Manager

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical

Manager

Nathan D. Schulz, Ph.D. Assistant Research Scientist

Nathan Sching

TABLE OF CONTENTS

1:	•		age
	_		
Chapter		Introduction	
	_	round	
	•	ive	
Chapter		System Details	
		rticle and Installation Details	
2.2.		Modifications during Tests	
2.3.		al Specifications	
		onditions	
Chapter		Test Requirements and Evaluation Criteria	
		Test Performed/Matrix	
		ation Criteria	
Chapter		Test Conditions	
		acility	
		e Tow and Guidance System	
		Acquisition Systems	
4.3.		ehicle Instrumentation and Data Processing	
4.3.2		nthropomorphic Dummy Instrumentation	
4.3.3		notographic Instrumentation Data Processing	
Chapter		MASH Test 3-10 (Crash Test 491534-01-1)	
		esignation and Actual Impact Conditions	
		er Conditions	
5.3.	Test V	ehicle	. 17
5.4.	Test D	escription	.19
5.5.	Damag	ge to Test Installation	. 19
5.6.		ge to Test Vehicle	
5.7.	Occup	ant Risk Factors	. 24
5.8.	Test S	ummary	
Chapter		MASH Test 3-11 (Crash Test 491534-01-2)	
6.1.	Test D	esignation and Actual Impact Conditions	. 27
6.2.	Weath	er Conditions	. 29
6.3.	Test V	ehicle	. 29
6.4.	Test D	escription	. 31
6.5.	Damag	ge to Test Installation	. 31
6.6.	Damag	ge to Test Vehicle	33
6.7.	Occup	ant Risk Factors	36
6.8.	Test S	ummary	36
Chapter		Summary and Conclusions	
Chapter	8.	Implementation	
Referen			
Appendi	ix A.	Details of Enhanced Motorcycle MGS	45
Appendi		Supporting Certification Documents	

Append	dix C.	73
Ċ.1.	Vehicle Properties and Information	73
	Sequential Photographs	
	Vehicle Angular Displacements	
C.4.	Vehicle Accelerations	80
Append	dix D. MASH Test 3-11 (Crash Test 491534-01-2)	83
D.1.	Vehicle Properties and Information	83
D.2.	Sequential Photographs	86
D.3.	Vehicle Angular Displacements	89
D.4.	Vehicle Accelerations	90

LIST OF FIGURES

Pa	age
Figure 1.1. Wood Post MGS with Motorcycle Rail Elements. (2)	4
Testing.	5
Figure 2.4. Enhanced Motorcycle MGS at Impact prior to Testing Figure 2.5. Oblique Field-Side View of Enhanced Motorcycle MGS prior to Testing Figure 2.6. Focus on Post 1 without Rub Rail of the Enhanced Motorcycle MGS	6
prior to Testing	7
01-1Figure 5.2. Enhanced Motorcycle MGS/Test Vehicle Impact Location for	.16
Test 491534-01-1Figure 5.3. Impact Side of Test Vehicle before Test 491534-01-1Figure 5.4. Opposite Impact Side of Test Vehicle before Test 491534-01-1	.17
Figure 5.5. Enhanced Motorcycle MGS at Impact Location after Test 491534-01-1 Figure 5.6. Downstream View of Enhanced Motorcycle MGS after	. 20
Test 491534-01-1Figure 5.7. Impact Side of Test Vehicle after Test 491534-01-1	. 21
Figure 5.8. Rear Impact Side of Test Vehicle after Test 491534-01-1Figure 5.9. Overall Interior of Test Vehicle after Test 491534-01-1Figure 5.10. Interior of Test Vehicle on Impact Side after Test 491534-01-1	. 22
Figure 5.11. Summary of Results for <i>MASH</i> Test 3-10 on Enhanced Motorcycle MGS	. 25
Figure 6.1. Enhanced Motorcycle MGS/Test Vehicle Geometrics for Test 491534-	. 28
Figure 6.2. Enhanced Motorcycle MGS/Test Vehicle Impact Location for	
Test 491534-01-2Figure 6.3. Impact Side of Test Vehicle before Test 491534-01-2	
Figure 6.4. Opposite Impact Side of Test Vehicle before Test 491534-01-2 Figure 6.5. Enhanced Motorcycle MGS at Impact Location after Test 491534-01-2	.30
Figure 6.6. Downstream View of Enhanced Motorcycle MGS after Test 491534-01-	
2Figure 6.7. Impact Side of Test Vehicle after Test 491534-01-2	. 33 . 33
Figure 6.8. Rear Impact Side of Test Vehicle after Test 491534-01-2	.34
Figure 6.9. Overall Interior of Test Vehicle after Test 491534-01-2	. 34
Figure 6.10. Interior of Test Vehicle on Impact Side after Test 491534-01-2 Figure 6.11. Summary of Results for MASH Test 3-11 on Enhanced Motorcycle MGS	
Figure C.1. Vehicle Properties for Test 491534-01-1.	73

Figure C.2. Exterior Crush Measurements for Test 491534-01-1	74
Figure C.3. Occupant Compartment Measurements for Test 491534-01-1	75
Figure C.4. Sequential Photographs for Test 491534-01-1 (Overhead Views)	76
Figure C.5. Sequential Photographs for Test 491534-01-1 (Frontal Views)	77
Figure C.6. Sequential Photographs for Test 491534-01-1 (Rear Views)	78
Figure C.7. Vehicle Angular Displacements for Test 491534-01-1	79
Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test 491534-01-1	
(Accelerometer Located at Center of Gravity)	80
Figure C.9. Vehicle Lateral Accelerometer Trace for Test 491534-01-1	
(Accelerometer Located at Center of Gravity)	80
Figure C.10. Vehicle Vertical Accelerometer Trace for Test 491534-01-1	
(Accelerometer Located at Center of Gravity)	81
Figure D.1. Vehicle Properties for Test 491534-01-2.	83
Figure D.2. Exterior Crush Measurements for Test 491534-01-2	
Figure D.3. Occupant Compartment Measurements for Test 491534-01-2	85
Figure D.4. Sequential Photographs for Test 491534-01-2 (Overhead Views)	86
Figure D.5. Sequential Photographs for Test 491534-01-2 (Frontal Views)	87
Figure D.6. Sequential Photographs for Test 491534-01-2 (Rear Views)	88
Figure D.7. Vehicle Angular Displacements for Test 491534-01-2	89
Figure D.8. Vehicle Longitudinal Accelerometer Trace for Test 491534-01-2	
(Accelerometer Located at Center of Gravity)	90
Figure D.9. Vehicle Lateral Accelerometer Trace for Test 491534-01-2	
(Accelerometer Located at Center of Gravity)	90
Figure D.10. Vehicle Vertical Accelerometer Trace for Test 491534-01-2	
(Accelerometer Located at Center of Gravity)	91

LIST OF TABLES

Pa	age
Table 2.1. Soil Strength for 491534-01-1.	
Table 2.2. Soil Strength for 491534-01-2	8
Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3	
Longitudinal Barriers	
Table 3.2. Evaluation Criteria Required for MASH Testing	10
Table 5.1. Impact Conditions for MASH Test 3-10, Crash Test 491534-01-1	
Table 5.2. Exit Parameters for MASH Test 3-10, Crash Test 491534-01-1	15
Table 5.3. Weather Conditions for Test 491534-01-1	
Table 5.4. Vehicle Measurements for Test 491534-01-1	18
Table 5.5. Events during Test 491534-01-1	
Table 5.6. Damage to the Enhanced Motorcycle MGS for Test 491534-01-1	19
Table 5.7. Deflection and Working Width of the Enhanced Motorcycle MGS for Test	
491534-01-1	
Table 5.8. Occupant Compartment Deformation for Test 491534-01-1	23
Table 5.9. Exterior Vehicle Damage for Test 491534-01-1.	23
Table 5.10. Occupant Risk Factors for Test 491534-01-1	
Table 6.1. Impact Conditions for MASH Test 3-11, Crash Test 491534-01-2	
Table 6.2. Exit Parameters for MASH Test 3-11, Crash Test 491534-01-2	
Table 6.3. Weather Conditions for Test 491534-01-2	29
Table 6.4. Vehicle Measurements for Test 491534-01-2	
Table 6.5. Events during Test 491534-01-2.	
Table 6.6. Damage to the Enhanced Motorcycle MGS for Test 491534-01-2	31
Table 6.7. Deflection and Working Width of the Enhanced Motorcycle MGS for Test	
491534-01-2	_
Table 6.8. Occupant Compartment Deformation for Test 491534-01-2	
Table 6.9. Exterior Vehicle Damage for Test 491534-01-2.	
Table 6.10. Occupant Risk Factors for Test 491534-01-2	36
Table 7.1. Assessment Summary for MASHTL-3 Tests on Enhanced Motorcycle	
MGS	39

	SI* (MODERN	METRIC) CON	/ERSION FACTORS	
		IMATE CONVERSION		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		0
in ²	square inches	645.2	square millimeters	mm²
ft ²	square feet	0.093	square meters	m²
yd ²	square yards	0.836	square meters	m²
ac mi ²	acres	0.405 2.59	hectares	ha km²
1111-	square miles	VOLUME	square kilometers	KIII
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	I
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
, u		mes greater than 1000L		
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
T	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")
		MPERATURE (exac		Ŭ \
°F	Fahrenheit	5(F-32)/9	Celsius	°C
		or (F-32)/1.8		
	FOR	CE and PRESSURE	or STRESS	
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch		kilopascals	kPa
lbf/in ²	APPROXII	n 6.89 MATE CONVERSION		kPa
Symbol				kPa Symbol
	APPROXII	MATE CONVERSION	IS FROM SI UNITS	
	APPROXII	MATE CONVERSION Multiply By	IS FROM SI UNITS	
Symbol	APPROXIII When You Know	MATE CONVERSION Multiply By LENGTH 0.039 3.28	NS FROM SI UNITS To Find	Symbol
Symbol mm	Mhen You Know millimeters meters meters meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09	IS FROM SI UNITS To Find inches feet yards	Symbol in ft yd
Symbol mm m	APPROXIME When You Know millimeters meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621	IS FROM SI UNITS To Find inches feet	Symbol in ft
Symbol mm m m km	Mhen You Know millimeters meters meters kilometers	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	IS FROM SI UNITS To Find inches feet yards miles	Symbol in ft yd mi
Symbol mm m m km km	Mhen You Know millimeters meters meters kilometers square millimeters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	IS FROM SI UNITS To Find inches feet yards miles square inches	Symbol in ft yd mi in²
Symbol mm m m km mm² m²	Mhen You Know millimeters meters meters kilometers square millimeters square meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	IS FROM SI UNITS To Find inches feet yards miles square inches square feet	Symbol in ft yd mi in² ft²
Symbol mm m m km mm² m² m² m²	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	inches feet yards miles square inches square feet square yards	Symbol in ft yd mi in² ft² yd²
Symbol mm m m km mm² m² m² ha	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	inches feet yards miles square inches square feet square yards acres	Symbol in ft yd mi in² ft² yd² ac
Symbol mm m m km mm² m² m² m²	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	inches feet yards miles square inches square feet square yards	Symbol in ft yd mi in² ft² yd²
Symbol mm m m km mm² m² m² ha km²	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	inches feet yards miles square inches square feet square yards acres square miles	in ft yd mi in² ft² yd² ac mi²
Symbol mm m m km mm² m² m² ha km² mL	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters square meters hectares Square kilometers milliliters	MATE CONVERSION Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces	in ft yd mi in² ft² yd² ac mi²
Symbol mm m m km mm² m² m² ha km² mL L	Mhen You Know millimeters meters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	Symbol in ft yd mi in² ft² yd² ac mi² oz gal
Symbol mm m m km mm² m² m² ha km² mL L m³	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	in ft yd mi in² ft² yd² ac mi² oz gal ft³
Symbol mm m m km mm² m² m² ha km² mL L	Mhen You Know millimeters meters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	Symbol in ft yd mi in² ft² yd² ac mi² oz gal
Symbol mm m m km m² m² m² ha km² mL L m³ m³	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters	MATE CONVERSION Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³
Symbol mm m m km mm² m² m² ha km² mL L m³ m³	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams	MATE CONVERSION Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ d	Mhen You Know millimeters meters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms	MATE CONVERSION Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³
Symbol mm m m km mm² m² m² ha km² mL L m³ m³	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton	MATE CONVERSION Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ d	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton	MATE CONVERSION Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ d y mg (or "t")	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton" TE	Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) ct degrees) Fahrenheit	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T
Symbol mm m m km m² m² m² ha km² mL L m³ m³ g kg Mg (or "t")	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton" TE Celsius	Mate Conversion Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) et degrees) Fahrenheit	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ d y mg (or "t")	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton" TE	Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) ct degrees) Fahrenheit	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T

^{*}SI is the symbol for the International System of Units

Chapter 1. INTRODUCTION

The purpose of the tests reported herein was to assess the performance of the Enhanced Motorcycle MGS according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)*, Second Edition (1). The crash tests were performed in accordance with *MASH* Test Level 3 (TL-3), which requires two crash tests (as discussed in Chapter 3).

1.1. BACKGROUND

A guardrail system with lower and upper rail elements was previously developed to address motorcycle safety (2). The system consisted of a MGS with round wood posts, steel rub rail, and steel cap rail. Figure 1.1 shows the system prior to testing.

Figure 1.1. Wood Post MGS with Motorcycle Rail Elements. (2)

The system was evaluated through full-scale crash testing with motorcyclist and vehicle impacts. Sliding ATD impacts and an upright motorcyclist were conducted to evaluate the performance for different motorcyclist impact scenarios. The system indicated the ability to prevent interaction with discrete elements of the guardrail during the sliding and upright impacts. The system showed satisfactory performance for MASH TL-3.

1.2. OBJECTIVE

The goal of this project was to evaluate a steel post MGS with lower and upper rail elements according to MASH TL-3.

Chapter 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

The installation consisted of a guardrail system with a standard four-space W-beam guardrail secured to the top of the rail 31 inches above grade by steel 72-inch W6x8.5 posts and wood blockouts. A series of 12-ft 10-inch-long, 14¾-inch-wide rub rails were located just below the W-beam such that the bottom was 1 inch from grade and were held away from the posts by a rub rail bracket at a 20-degree angle. A series of 12-ft 10-inch-long and 15-inch-wide cap rails were placed over the top of the guardrail posts and blockouts. The posts were evenly spaced at 75 inches, with a consistent embedment of 36½ inches, and the W-beam and both rails ran the entire length of need of 156 ft 3 inches. The installation was capped on both ends by a steel post terminal system, for a total installation length of 181 ft 3 inches.

Figure 2.1 presents the overall information on the Enhanced Motorcycle MGS, and Figure 2.2 through Figure 2.7 provide photographs of the installation. Appendix A provides further details on the Enhanced Motorcycle MGS. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by TTI Proving Ground personnel and DMA Contractors.

2.2. DESIGN MODIFICATIONS DURING TESTS

No modifications were made to the installation during the testing phase.

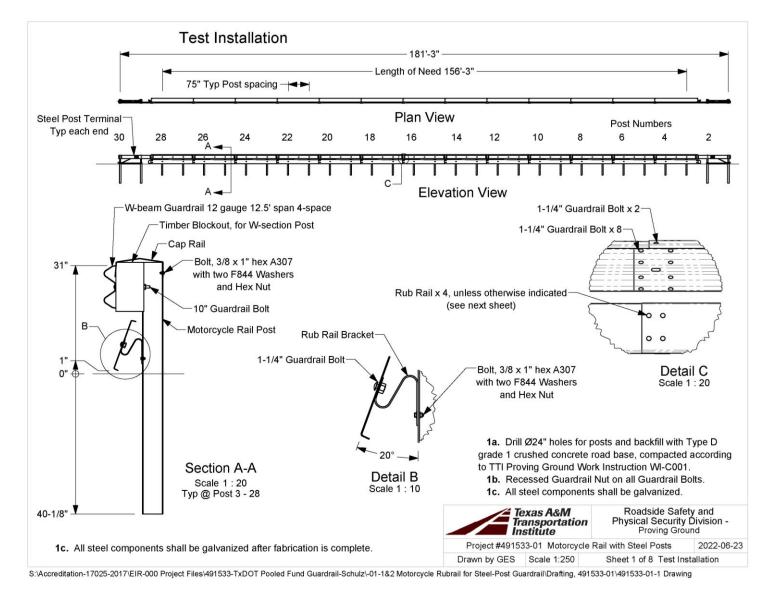


Figure 2.1. Details of Enhanced Motorcycle MGS.

Figure 2.2. Overall View of the Enhanced Motorcycle MGS prior to Testing.

Figure 2.3. Upstream In-Line View of the Enhanced Motorcycle MGS prior to Testing.

Figure 2.4. Enhanced Motorcycle MGS at Impact prior to Testing.

Figure 2.5. Oblique Field-Side View of Enhanced Motorcycle MGS prior to Testing.

Figure 2.6. Focus on Post 1 without Rub Rail of the Enhanced Motorcycle MGS prior to Testing.

Figure 2.7. Oblique Upstream View of Enhanced Motorcycle MGS prior to Testing.

2.3. MATERIAL SPECIFICATIONS

Appendix B provides material certification documents for the materials used to install/construct the Enhanced Motorcycle MGS.

2.4. SOIL CONDITIONS

The test installation was installed in standard soil meeting Type 1 Grade D of AASHTO Standard Specification M147-17 "Materials for Aggregate and Soil Aggregate Subbase, Base, and Surface Courses."

In accordance with Appendix B of *MASH*, soil strength was measured the day of the crash test. During installation of the Enhanced Motorcycle MGS for full-scale crash testing, two 6-ft-long W6x16 posts were installed in the immediate vicinity of the Enhanced Motorcycle MGS using the same fill materials and installation procedures used in the test installation and the standard dynamic test.

On the day of Test 3-10, September 19, 2023, loads on the post at deflections were as shown in Table 2.1. The backfill material in which the Enhanced Motorcycle MGS was installed met minimum *MASH* requirements for soil strength.

 Displacement (in)
 Minimum Load (lb)
 Actual Load (lb)

 5
 3940
 9300

 10
 5500
 9800

 15
 6540
 9600

Table 2.1. Soil Strength for 491534-01-1.

On the day of Test 3-11, October 6, 2023, loads on the post at deflections were as shown in Table 2.2. The backfill material in which the Enhanced Motorcycle MGS was installed met minimum *MASH* requirements for soil strength.

Table 2.2. Soil Strength for 491534-01-2.

Displacement (in)	Minimum Load (lb)	Actual Load (lb)
5	3940	7400
10	5500	8800
15	6540	10,000

Chapter 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST PERFORMED/MATRIX

Table 3.1 shows the test conditions and evaluation criteria for *MASH* TL-3 for longitudinal barriers. The target critical impact points (CIPs) for each test were determined using the information provided in *MASH* Section 2.2.1 and Section 2.3.2. Figure 3.1 shows the target CIP for *MASH* TL-3 tests on the Enhanced Motorcycle MGS.

Table 3.1. Test Conditions and Evaluation Criteria Specified for *MASH* TL-3 Longitudinal Barriers.

Test Designation	Test Vehicle	Impact Speed	Impact Angle	Evaluation Criteria
3-10	1100C	62 mi/h	25°	A, D, F, H, I
3-11	2270P	62 mi/h	25°	A, D, F, H, I

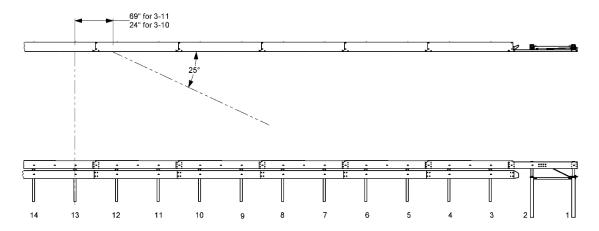


Figure 3.1. Target CIP for MASH TL-3 Tests on Enhanced Motorcycle MGS.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-5 and 5-1 of *MASH* were used to evaluate the crash tests reported herein. Table 3.1 lists the test conditions and evaluation criteria required for *MASH* TL-3, and Table 3.2 provides detailed information on the evaluation criteria.

Table 3.2. Evaluation Criteria Required for *MASH* Testing.

Evaluation Factors	Evaluation Criteria
Α.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 10 ft/s, or maximum allowable value of 16 ft/s.
I.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.

Chapter 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The sites selected for construction and testing are along the edge of an out-of-service apron/runway. The apron/runway consists of an unreinforced jointed-concrete pavement in 12.5-ft x 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

4.2. VEHICLE TOW AND GUIDANCE SYSTEM

For the testing utilizing the 1100C and 2270P vehicles, each was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

4.3. DATA ACQUISITION SYSTEMS

4.3.1. Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a multi-channel data acquisition system (DAS) produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors,

measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The data acquisition hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the DAS unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each DAS is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO® 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ±1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the DAS-captured data to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

4.3.2. Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side of the 1100C vehicle. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional, and no dummy was used in the test.

4.3.3. Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One placed overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed with a field of view parallel to and aligned with the installation at the downstream end.
- One placed at an oblique angle upstream from the installation on the field side.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the Enhanced Motorcycle MGS. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

Chapter 5. MASH TEST 3-10 (CRASH TEST 491534-01-1)

5.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 5.1 for the *MASH* impact conditions and Table 5.2 for the exit parameters for Test 491534-01-1. Figure 5.1 and Figure 5.2 depict the target impact setup.

Table 5.1. Impact Conditions for MASH Test 3-10, Crash Test 491534-01-1.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	61.2
Impact Angle (deg)	25	±1.5°	25.4
Impact Severity (kip-ft)	51	≥51 kip-ft	56.3
Impact Location	24 inches upstream from the centerline of post 13	±12 inches	23.1 inches upstream from the centerline of post 13

Table 5.2. Exit Parameters for MASH Test 3-10, Crash Test 491534-01-1.

Exit Parameter	Measured
Speed (mi/h)	43.1
Trajectory (deg)	14.9
Heading (deg)	11.4
Brakes applied post impact (s)	2.7
Vehicle at rest position	148 ft downstream of impact point 102 ft to the traffic side
·	Vehicle positioned 90° left relative to the installation
Comments:	Vehicle remained upright and stable.
	Vehicle met the exit box ^a criteria by crossing the exit box 33 ft downstream from loss of contact.

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 5.1. Enhanced Motorcycle MGS/Test Vehicle Geometrics for Test 491534-01-1.

Figure 5.2. Enhanced Motorcycle MGS/Test Vehicle Impact Location for Test 491534-01-1.

5.2. WEATHER CONDITIONS

Table 5.3 provides the weather conditions for Test 491534-01-1.

Table 5.3. Weather Conditions for Test 491534-01-1.

Date of Test	2023-09-19
Wind Speed (mi/h)	8
Wind Direction (deg)	180
Temperature (°F)	87
Relative Humidity (%)	58
Vehicle Traveling (deg)	195

5.3. TEST VEHICLE

Figure 5.3 and Figure 5.4 show the 2018 Nissan Versa used for the crash test. Table 5.4 shows the vehicle measurements. Figure C.1 in Appendix C.1 gives additional dimensions and information on the vehicle.

Figure 5.3. Impact Side of Test Vehicle before Test 491534-01-1.

Figure 5.4. Opposite Impact Side of Test Vehicle before Test 491534-01-1.

Table 5.4. Vehicle Measurements for Test 491534-01-1.

Test Parameter	Specification	Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Inertial Weight (lb)	2420	±55	2443
Gross Static ^a (lb)	2585	±55	2608
Wheelbase (inches)	98	±5	102.4
Front Overhang (inches)	35	±4	32.5
Overall Length (inches)	169	±8	175.4
Overall Width (inches)	65	±3	66.7
Hood Height (inches)	28	±4	30.5
Track Width ^b (inches)	59	±2	58.4
CG aft of Front Axle ^c (inches)	39	±4	41.2
CG above Ground ^{c,d} (inches)	N/A	N/A	N/A

Note: N/A = not applicable; CG = center of gravity.

a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles. ^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

5.4. TEST DESCRIPTION

Table 5.5 lists events that occurred during Test 491534-01-1. Figures C.4, C.5, and C.6 in Appendix C.2 present sequential photographs during the test.

Table 5.5. Events during Test 491534-01-1.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0170	Post 13 began to lean toward field side
0.0220	Post 12 and post 14 began to lean toward field side
0.0390	Vehicle began to redirect
0.0450	Top cap rail began to come off
0.0910	Post 15 began to lean toward field side
0.1750	Vehicle passenger-side rear bumper contacted the rail at post 13
0.1810	Vehicle was parallel with installation
0.3400	Vehicle exited the installation at 43.1 mi/h with a heading of 11.4 degrees and a trajectory of 14.9 degrees

5.5. DAMAGE TO TEST INSTALLATION

The system was scuffed and deformed, and the cap rail released from posts 7 through 14. The top of the rail and the rub rail were deformed. The flanges of posts 12 through 15 were bent below 90 degrees toward the field side.

Table 5.6 describes the damage to the Enhanced Motorcycle MGS. Table 5.7 describes the deflection and working width of the Enhanced Motorcycle MGS. Figure 5.5 and Figure 5.6 show the damage to the Enhanced Motorcycle MGS.

Table 5.6. Damage to the Enhanced Motorcycle MGS for Test 491534-01-1.

Post Number	Soil Gap (inches)	Post Lean from Vertical (degrees)
12	0.3 t/s	0.8 f/s
13	2.8 t/s, 0.5 f/s	8.7 f/s
14	2.0 t/s, 1.3 f/s	10.5 f/s
15	0.5 t/s, 0.1 f/s	1.8 f/s

Note: t/s = traffic side; f/s = field side.

Table 5.7. Deflection and Working Width of the Enhanced Motorcycle MGS for Test 491534-01-1.

Test Parameter	Measured
Permanent Deflection/Location	9.8 inches toward field side, 20 inches upstream of post 14
Dynamic Deflection	13.8 inches toward field side, top cover between posts 12 and 13
Working Widtha and Height	33.5 inches, at a height of 38.8 inches

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field-side edge of the barrier.

Figure 5.5. Enhanced Motorcycle MGS at Impact Location after Test 491534-01-1.

Figure 5.6. Downstream View of Enhanced Motorcycle MGS after Test 491534-01-1.

5.6. DAMAGE TO TEST VEHICLE

Figure 5.7 and Figure 5.8 show the damage sustained by the vehicle. Figure 5.9 and Figure 5.10 show the interior of the test vehicle. Table 5.8 and Table 5.9 provide details on the occupant compartment deformation and exterior vehicle damage. Figures C.2 and C.3 in Appendix C.1 provide exterior crush and occupant compartment measurements.

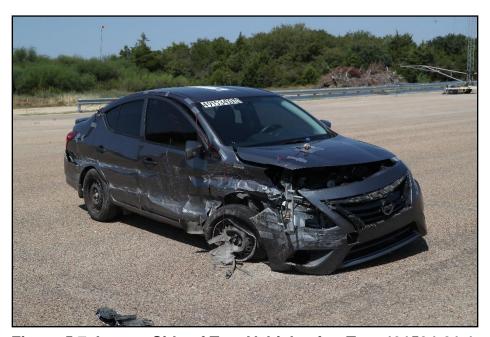


Figure 5.7. Impact Side of Test Vehicle after Test 491534-01-1.

Figure 5.8. Rear Impact Side of Test Vehicle after Test 491534-01-1.

Figure 5.9. Overall Interior of Test Vehicle after Test 491534-01-1.

Figure 5.10. Interior of Test Vehicle on Impact Side after Test 491534-01-1.

Table 5.8. Occupant Compartment Deformation for Test 491534-01-1.

Test Parameter	Specification (inches)	Measured (inches)
Roof	≤4.0	0.0
Windshield	≤3.0	0.0
A and B Pillars	≤5.0 overall/≤3.0 lateral	0.0
Foot Well/Toe Pan	≤9.0	0.0
Floor Pan/Transmission Tunnel	≤12.0	0.5
Side Front Panel	≤12.0	0.3
Front Door (above Seat)	≤9.0	0.3
Front Door (below Seat)	≤12.0	0.0

Table 5.9. Exterior Vehicle Damage for Test 491534-01-1.

Side Windows	Side windows remained intact
Maximum Exterior Deformation	10 inches above the front bumper
VDS	01RFQ4
CDC	01FREW6
Fuel Tank Damage	None
Description of Damage to Vehicle:	The bumper, grill, radiator, and support were dented. The right front headlight was busted. The right front frame rail and the right front wheel were bent, with the right front tire being flat. The whole passenger side of the vehicle was dented and scratched. There was a 3-inch gap at the top of the right front door. The right rear bumper was scratched up.

5.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 5.10. Figure C.7 in Appendix C.3 shows the vehicle angular displacements, and Figures C.8 through C.10 in Appendix C.4 show acceleration versus time traces.

Table 5.10. Occupant Risk Factors for Test 491534-01-1.

Test Parameter	Specification ^a	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0 30.0	19.4	0.1043 seconds on right side of interior
OIV, Lateral (ft/s)	≤40.0 30.0	23.3	0.1043 seconds on right side of interior
Ridedown, Longitudinal (g)	≤20.49 15.0	9.7	0.1113-0.1213 seconds
Ridedown, Lateral (g)	≤20.49 <i>15.0</i>	13.6	0.1121-0.1221 seconds
Theoretical Head Impact Velocity (THIV) (m/s)	N/A	9.1	0.1012 seconds on right side of interior
Acceleration Severity Index (ASI)	N/A	1.3	0.1023-0.1523 seconds
50-ms Moving Avg. Accelerations (MA) Longitudinal (g)	N/A	-8.8	0.0804-0.1304 seconds
50-ms MA Lateral (g)	N/A	-9.6	0.0808-0.1308 seconds
50-ms MA Vertical (g)	N/A	-2.3	0.1699-0.2199 seconds
Roll (deg)	≤75	18.5	2.4909 seconds
Pitch (deg)	≤75	3.7	2.4858 seconds
Yaw (deg)	N/A	67.8	2.4999 seconds

Note: N/A = not applicable.

5.8. TEST SUMMARY

Figure 5.11 summarizes the results of MASH Test 491534-01-1.

^a Values in italics are the preferred *MASH* values.

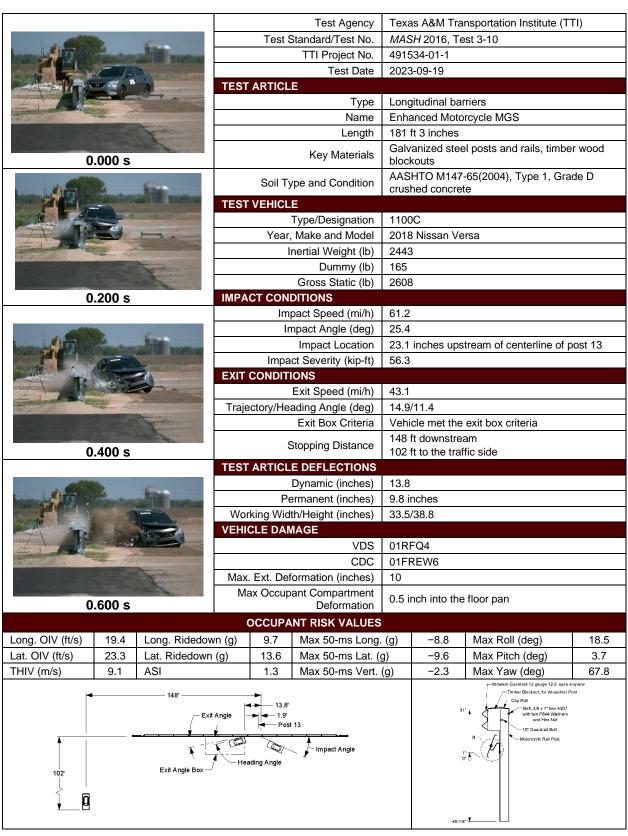


Figure 5.11. Summary of Results for *MASH* Test 3-10 on Enhanced Motorcycle MGS.

Chapter 6. *MASH* TEST 3-11 (CRASH TEST 491534-01-2)

6.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 6.1 for the impact conditions and Table 6.2 for the exit parameters for Test 491534-01-2. Figure 6.1 and Figure 6.2 depict the target impact setup.

Table 6.1. Impact Conditions for MASH Test 3-11, Crash Test 491534-01-2.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	63.1
Impact Angle (deg)	25	±1.5°	25.5
Impact Severity (kip-ft)	106	≥106 kip-ft	123.9
Impact Location	69 inches upstream from the centerline of post 13	±12 inches	67.8 inches upstream from the centerline of post 13

Table 6.2. Exit Parameters for MASH Test 3-11, Crash Test 491534-01-2.

Exit Parameter	Measured	
Speed (mi/h)	46.7	
Trajectory (deg)	9.8	
Heading (deg)	15.7	
Brakes applied post impact (s)	1.8	
Vehicle at rest position	285 ft downstream of impact point 9 ft to the traffic side	
·	Vehicle positioned 2° right relative to the installation	
Comments:	Vehicle remained upright and stable.	
	Vehicle met the exit box ^a criteria by crossing the exit box 42 ft downstream from loss of contact.	

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 6.1. Enhanced Motorcycle MGS/Test Vehicle Geometrics for Test 491534-01-2.

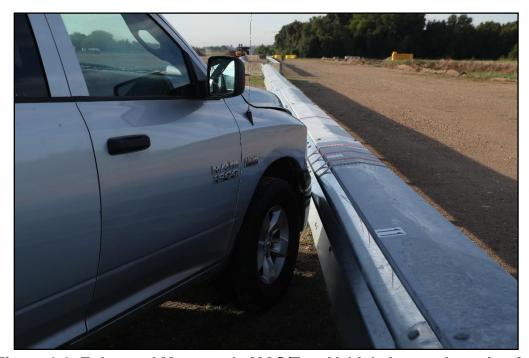


Figure 6.2. Enhanced Motorcycle MGS/Test Vehicle Impact Location for Test 491534-01-2.

6.2. WEATHER CONDITIONS

Table 6.3 provides the weather conditions for Test 491534-01-2.

Table 6.3. Weather Conditions for Test 491534-01-2.

Date of Test	2023-10-06
Wind Speed (mi/h)	8
Wind Direction (deg)	11
Temperature (°F)	78
Relative Humidity (%)	77
Vehicle Traveling (deg)	195

6.3. TEST VEHICLE

Figure 6.3 and Figure 6.4 show the 2018 RAM 1500 used for the crash test. Table 6.4 shows the vehicle measurements. Figure D.1 in Appendix D.1 gives additional dimensions and information on the vehicle.

Figure 6.3. Impact Side of Test Vehicle before Test 491534-01-2.

Figure 6.4. Opposite Impact Side of Test Vehicle before Test 491534-01-2.

Table 6.4. Vehicle Measurements for Test 491534-01-2.

Test Parameter	Specification	Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Inertial Weight (lb)	5000	±110	5024
Gross Static ^a (lb)	5000	±110	5024
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46.0
Track Width ^b (inches)	67	±1.5	68.3
CG aft of Front Axle ^c (inches)	63	±4	61.1
CG above Ground ^{c,d} (inches)	28	≥28	28.6

Note: N/A = not applicable; CG = center of gravity.

a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles. ^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

6.4. TEST DESCRIPTION

Table 6.5 lists events that occurred during Test 491534-01-2. Figures D.4, D.5, and D.6 in Appendix D.2 present sequential photographs during the test.

Table 6.5. Events during Test 491534-01-2.

Time (s)	Events
0	Vehicle impacted the installation
0.014	Post 12 began to lean toward field side
0.017	Post 13 began to lean toward field side
0.038	Vehicle began to redirect
0.043	Post 14 began to lean toward field side
0.063	Cap rail separated from system at post 12
0.084	Front passenger-side tire impacted post 13
0.175	Vehicle passenger-side rear bumper contacted the rail at post 13
0.248	Vehicle was parallel with installation
0.527	Vehicle exited the installation at 46.7 mi/h with a heading of 15.7 degrees and a trajectory of 9.8 degrees

6.5. DAMAGE TO TEST INSTALLATION

The rail was scuffed and deformed. The cap rail released from posts 5 through 19, and the W-beam was released from posts 13 through 15. The bolt slipped through the joint of the rub rail between posts 12 and 13. The cap rail joint of 12 and 13 had a bolt fail on the field side and an 80 percent pull through on the traffic side. Posts 12 through 14 had severe soil disturbance. Post 15 was twisted counterclockwise.

Table 6.6 describes the damage to the Enhanced Motorcycle MGS. Table 6.7 describes the deflection and working width of the Enhanced Motorcycle MGS. Figure 6.5 and Figure 6.6 show the damage to the Enhanced Motorcycle MGS.

Table 6.6. Damage to the Enhanced Motorcycle MGS for Test 491534-01-2.

Post Number	Soil Gap (inches)	Post Lean from Vertical (degrees)
1	0.1 u/s	0.0
12	1.5 t/s, 1.3 f/s	4.0 f/s
13	Soil blown out	47.0 d/s
14	Soil blown out	41.0 f/s
15	3.0 t/s, 0.8 f/s	17.0 f/s, post twisted counterclockwise
16	0.3 f/s	0.0

Note: u/s = upstream; t/s = traffic side; t/s = field side; t/s = downstream.

Table 6.7. Deflection and Working Width of the Enhanced Motorcycle MGS for Test 491534-01-2.

Test Parameter	Measured
Permanent Deflection/Location	18.5 inches toward field side, at post 14
Dynamic Deflection	29.1 inches toward field side, top cover between posts 12 and 13
Working Width ^a and Height	59.9 inches, at a height of 20 inches, on the field side of the top cover at the joint between posts 12 and 13

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field-side edge of the barrier.

Figure 6.5. Enhanced Motorcycle MGS at Impact Location after Test 491534-01-2.

Figure 6.6. Downstream View of Enhanced Motorcycle MGS after Test 491534-01-2.

6.6. DAMAGE TO TEST VEHICLE

Figure 6.7 and Figure 6.8 show the damage sustained by the vehicle. Figure 6.9 and Figure 6.10 show the interior of the test vehicle. Table 6.8 and Table 6.9 provide details on the occupant compartment deformation and exterior vehicle damage. Figures D.2 and D.3 in Appendix D.1 provide exterior crush and occupant compartment measurements.

Figure 6.7. Impact Side of Test Vehicle after Test 491534-01-2.

Figure 6.8. Rear Impact Side of Test Vehicle after Test 491534-01-2.

Figure 6.9. Overall Interior of Test Vehicle after Test 491534-01-2.

Figure 6.10. Interior of Test Vehicle on Impact Side after Test 491534-01-2.

Table 6.8. Occupant Compartment Deformation for Test 491534-01-2.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0 inches
Windshield	≤3.0 inches	0 inches
A and B Pillars	≤5.0 overall/≤3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤12.0 inches	0 inches
Side Front Panel	≤12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

Table 6.9. Exterior Vehicle Damage for Test 491534-01-2.

Side Windows	Side windows remained intact
Maximum Exterior Deformation	12 inches in the front bumper
VDS	01RFQ4
CDC	01FREW5
Fuel Tank Damage	None
Description of Damage to Vehicle:	On the right front, the headlight was gone, the frame was bent, the control arm was ripped off, and the fender and door were dented. The door had a 1-inch gap at the top. The front bumper, grill, and radiator were dented. The right rear door had small dents and scrapes. The right rear quarter fender and rear bumper were dented.

6.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.10. Figure D.7 in Appendix D.3 shows the vehicle angular displacements, and Figures D.8 through D.10 in Appendix D.4 show acceleration versus time traces.

Table 6.10. Occupant Risk Factors for Test 491534-01-2.

Test Parameter	Specification ^a	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	19.7	0.1334 seconds on right side of
	30.0		interior
OIV, Lateral (ft/s)	≤40.0	17.4	0.1334 seconds on right side of
	30.0		interior
Ridedown, Longitudinal	≤20.49	7.1	0.1486-0.1586 seconds
(g)	15.0		
Ridedown, Lateral (g)	≤20.49	7.6	0.1743-0.1843 seconds
	15.0		
THIV (m/s)	N/A	7.8	0.1284 seconds on right side of
			interior
ASI	N/A	0.8	0.0706-0.1206 seconds
50-ms MA Longitudinal (g)	N/A	-6.7	0.0581-0.1081 seconds
50-ms MA Lateral (g)	N/A	-6.6	0.0596-0.1096 seconds
50-ms MA Vertical (g)	N/A	-2.7	0.5902-0.6402 seconds
Roll (deg)	≤75	11.2	0.8747 seconds
Pitch (deg)	≤75	10.5	0.6176 seconds
Yaw (deg)	N/A	49.8	0.9539 seconds

Note: N/A = not applicable.

6.8. TEST SUMMARY

Figure 6.11 summarizes the results of MASH Test 491534-01-2.

^a Values in italics are the preferred *MASH* values.

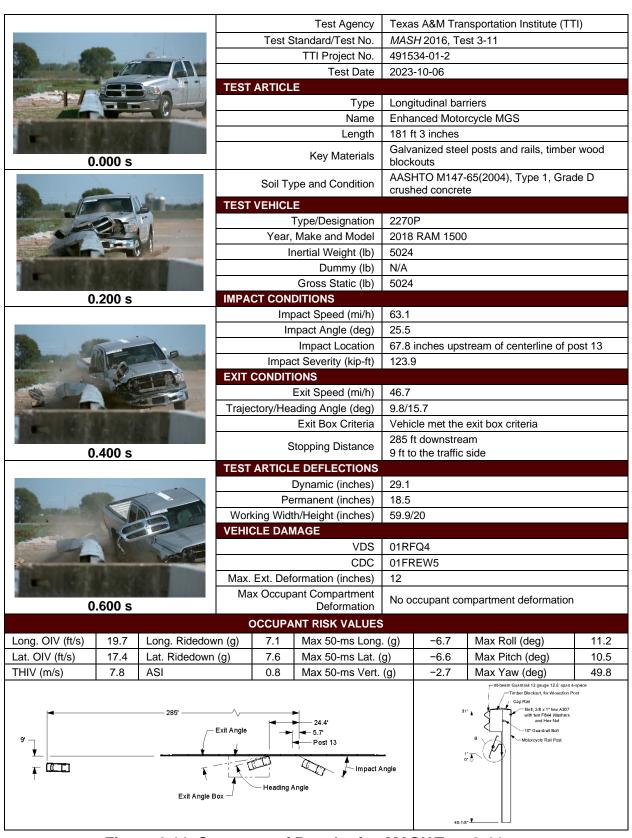


Figure 6.11. Summary of Results for *MASH* Test 3-11 on Enhanced Motorcycle MGS.

Chapter 7. SUMMARY AND CONCLUSIONS

The crash tests reported herein were performed in accordance with *MASH* TL-3, which involves two tests, on the Enhanced Motorcycle MGS.

Table 7.1 shows that the Enhanced Motorcycle MGS met the performance criteria for *MASH* TL-3 longitudinal barriers.

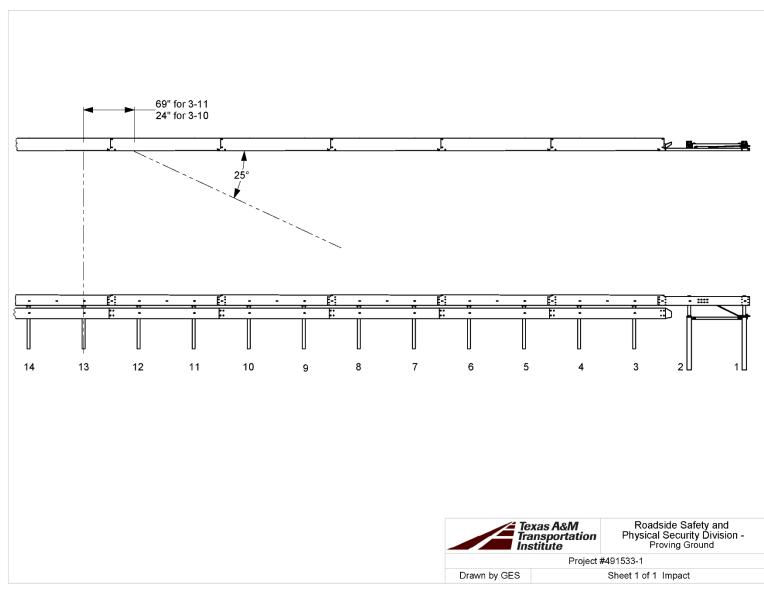
Table 7.1. Assessment Summary for *MASH* TL-3 Tests on Enhanced Motorcycle MGS.

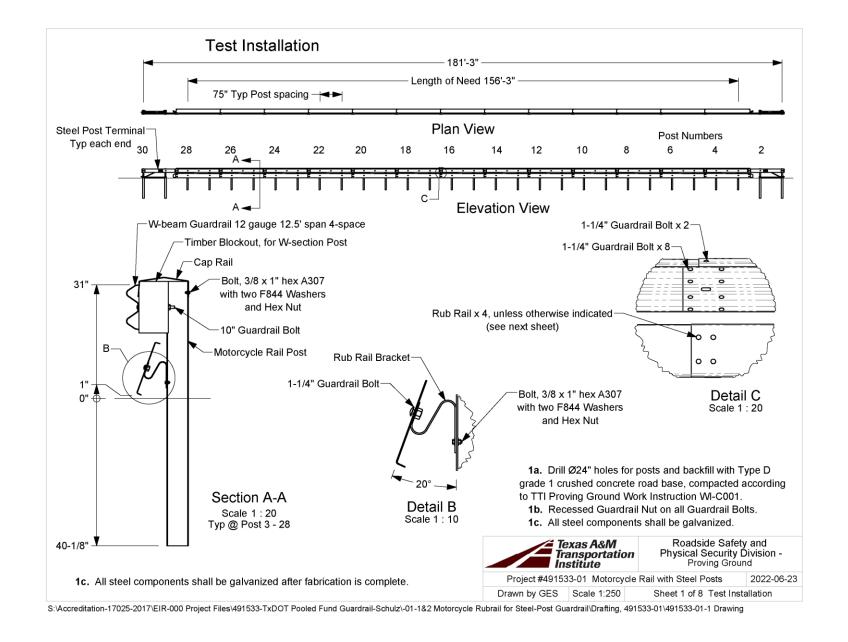
Evaluation Criteria ^a	Description	Test 491534-01-1	Test 491534-01-2
А	Contain, Redirect, or Controlled Stop	S	S
D	No Penetration into Occupant Compartment	S	S
F	Roll and Pitch Limit	S	S
Н	OIV Threshold	S	S
I	Ridedown Threshold	S	S
Overall	Evaluation	Pass	Pass

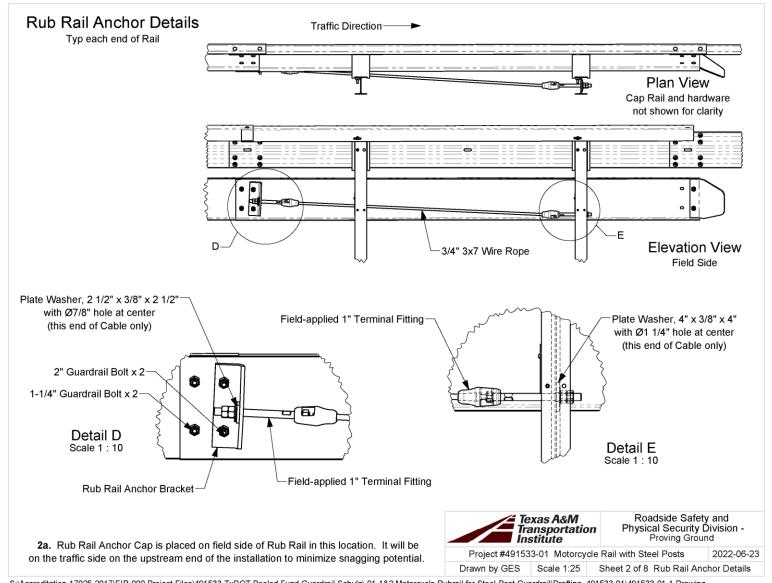
Note: S = Satisfactory. ^a See Table 3.2 for details.

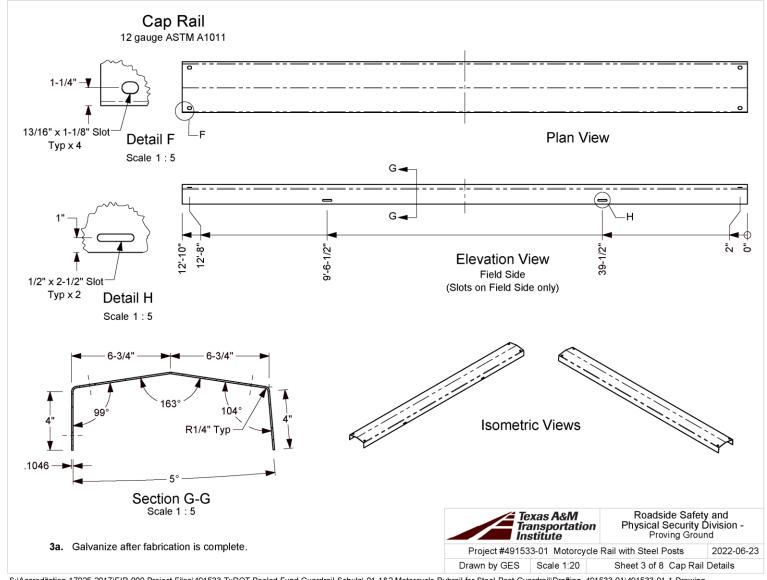
Chapter 8. IMPLEMENTATION*

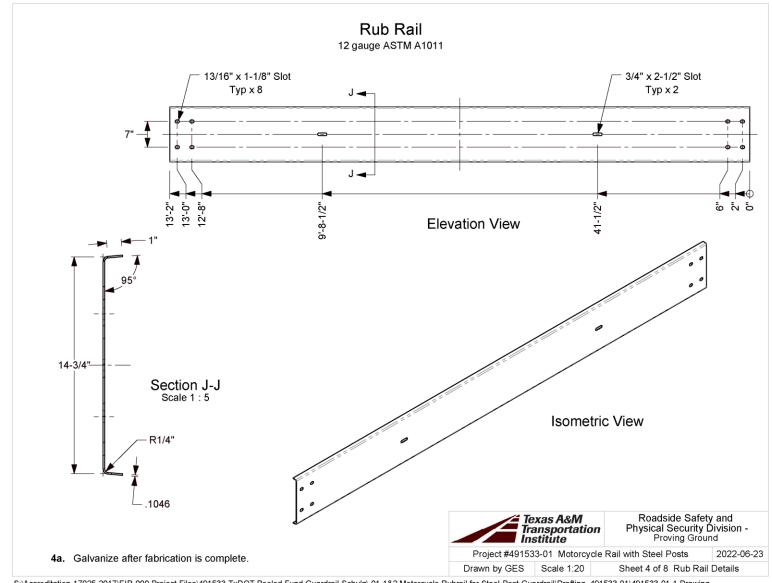
The Enhanced Motorcycle MGS was evaluated through full-scale crash testing. This system is ready for implementation as a MASH TL-3 longitudinal barrier system. Additionally, this system can be considered for implementation as a longitudinal barrier system designed to reduce injury and fatality risk for motorcyclists.

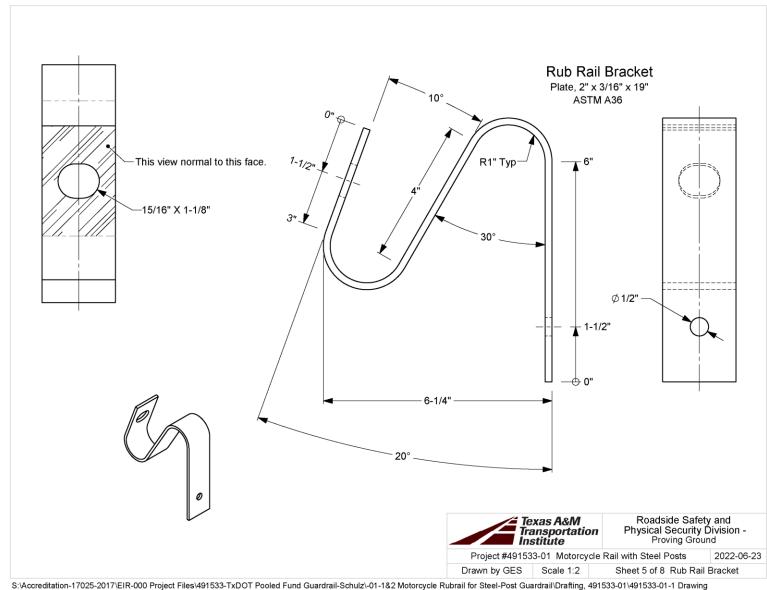

* The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

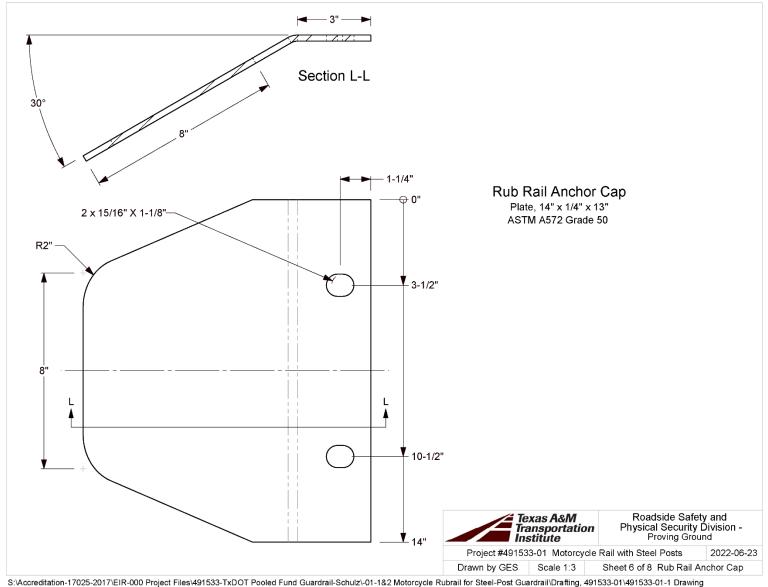

TRNo. 9-1531-R2B

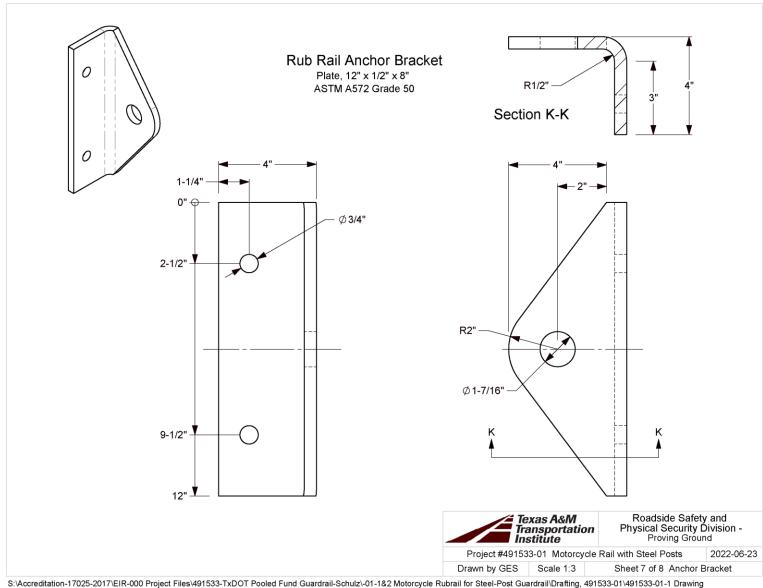

REFERENCES

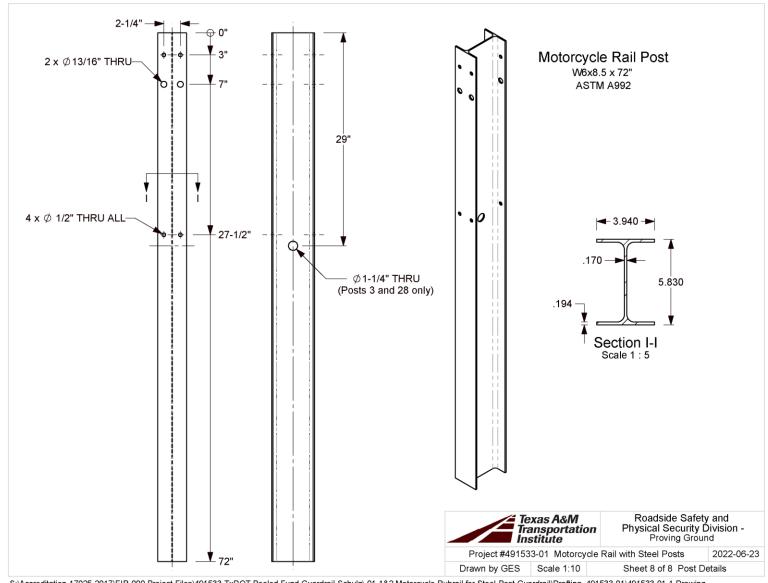

- 1. AASHTO. *Manual for Assessing Safety Hardware*, Second Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2016.
- 2. Schulz, N., Bligh, R., Dadashova, B., Silvestri Dobrovolny, C., and Schroeder, W. *Develop a Retrofit Design for Guard Fence System to Enhance Motorcycle Safety*. Report No. 0-6994-R1. Texas A&M Transportation Institute, College Station, TX, 2023.


APPENDIX A. DETAILS OF ENHANCED MOTORCYCLE MGS

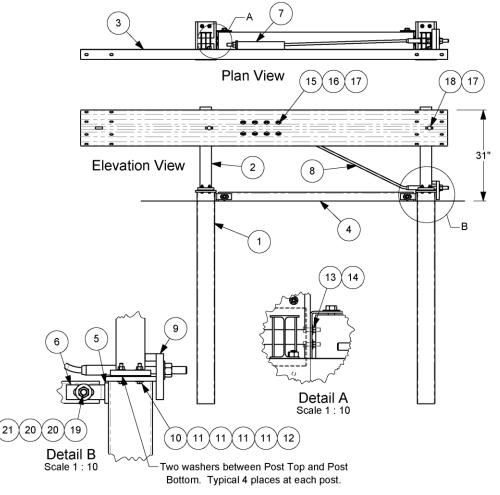








S:\Accreditation-17025-2017\EIR-000 Project Files\491533-TxDOT Pooled Fund Guardrail-Schulz\-01-1&2 Motorcycle Rubrail for Steel-Post Guardrail\Drafting, 491533-01\491533-01\19



S:\Accreditation-17025-2017\EIR-000 Project Files\491533-TxDOT Pooled Fund Guardrail-Schulz\-01-1&2 Motorcycle Rubrail for Steel-Post Guardrail\Drafting, 491533-01\491533-01\19

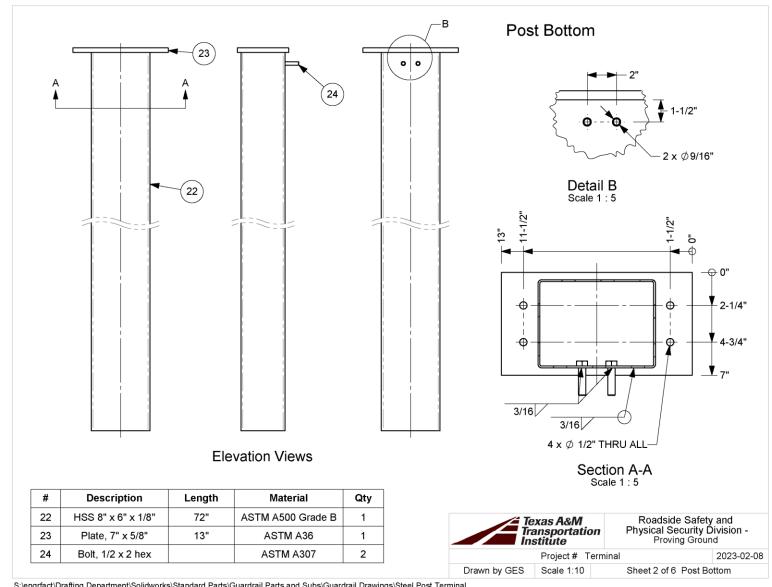
Steel Post Terminal Details

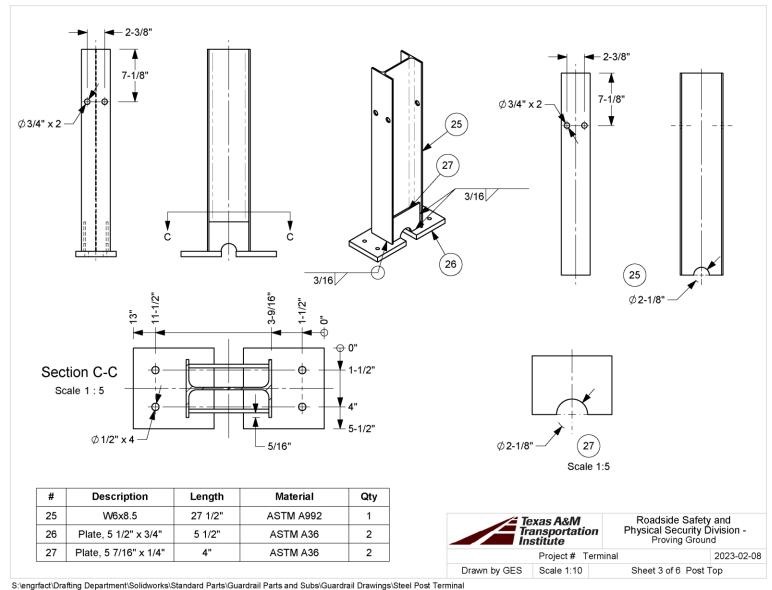
#	Part Name	QTY.
1	Post Bottom	2
2	Post Top	2
3	9'-4-1/2" span Terminal Rail	1
4	Strut	1
5	Strut Spacer	2
6	Strut Bracket	2
7	Guardrail Anchor Bracket	1
8	Anchor Cable Assembly	1
9	Bearing Plate	1
10	Bolt, 7/16 x 2 1/2" hex	8
11	Washer, 7/16 F844	32
12	Nut, 7/16 heavy hex	8
13	Nut, 1/2 hex	4
14	Washer, 1/2 F844	4
15	Bolt, 5/8 x 1 1/2" hex	8
16	Washer, 5/8 F844	8
17	Recessed Guardrail Nut	10
18	1-1/4" Guardrail Bolt	2
19	Bolt, 7/8 x 8 1/2" hex	2
20	Washer, 7/8 F844	4
21	Nut, 7/8 hex	2

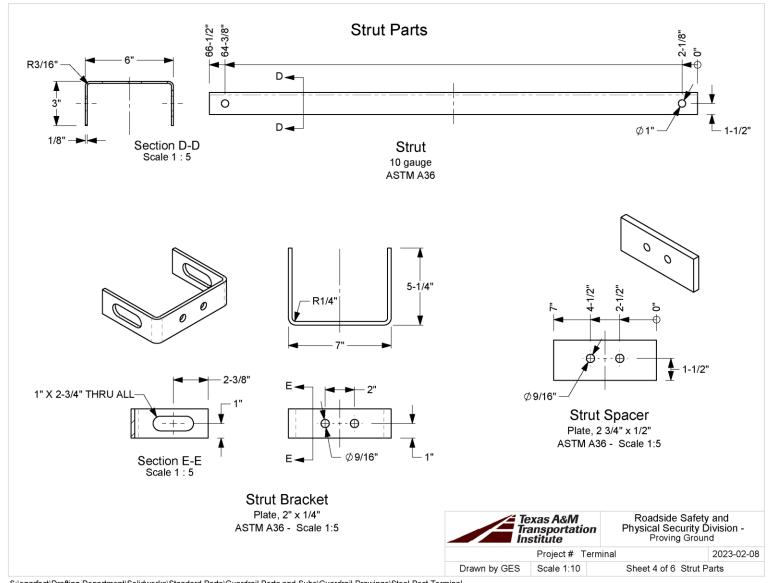
- 1a. 7/16" x 2-1/2" Bolts are ASTM A449. All other Bolts are ASTM A307. All Nuts (except Recessed Guardrail Nuts) are ASTM A563A unless otherwise indicated.
- 1b. All steel parts shall be galvanized.
- 1c. This specific terminal configuration has not been tested. It is used as a barrier anchorage device for crash testing purposes.

Roadside Safety and Physical Security Division -Proving Ground

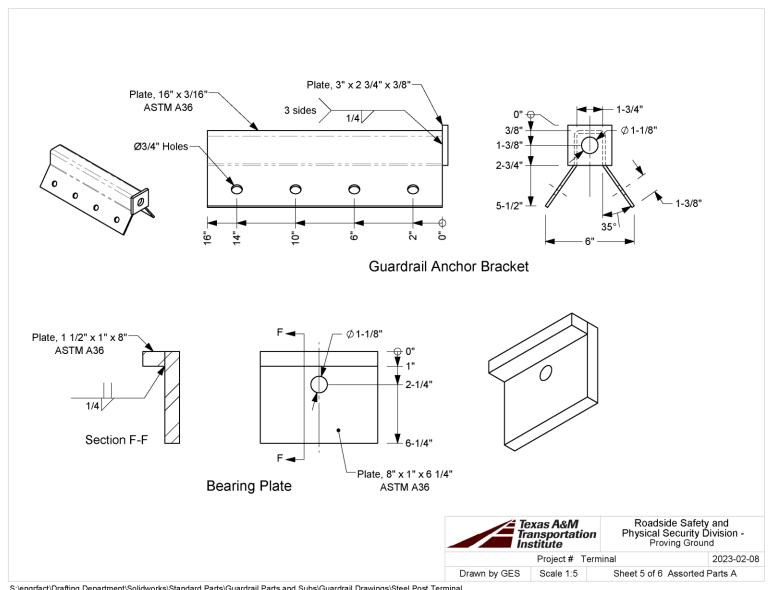
Project # Terminal

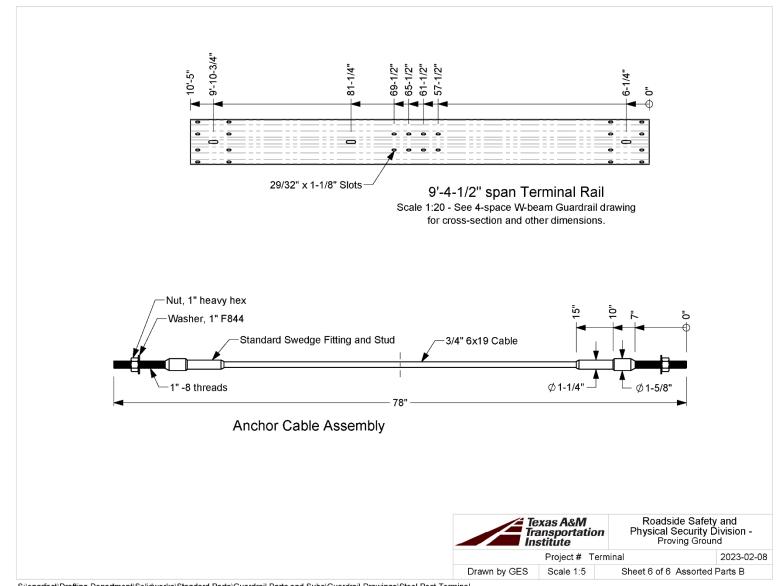

2023-02-08


Drawn by GES

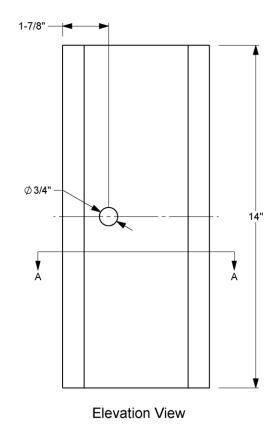

Scale 1:25

Sheet 1 of 6 Terminal Details


S:\engrfact\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Steel Post Terminal



S:\engrfact\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Steel Post Terminal



S:\engrfact\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Steel Post Terminal

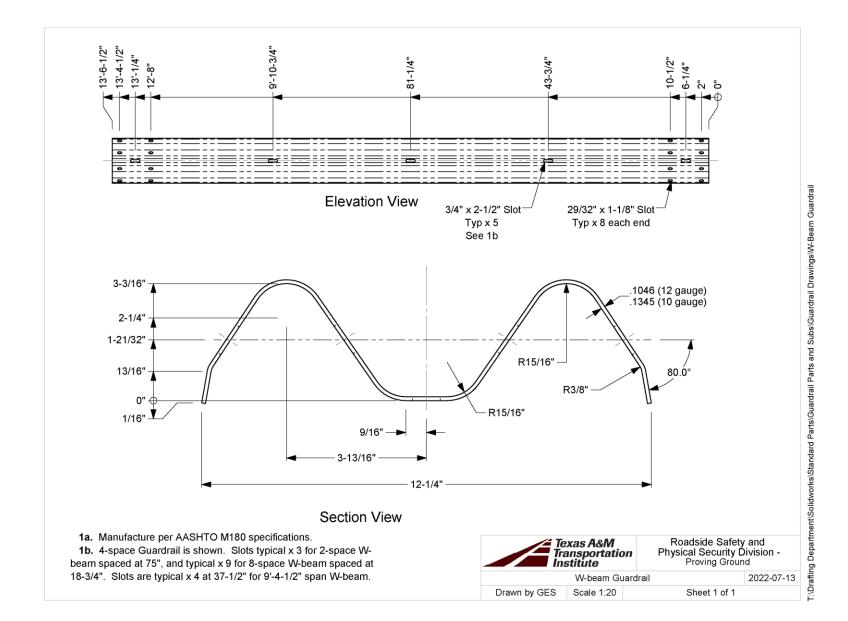
Timber Blockout for W-section Post

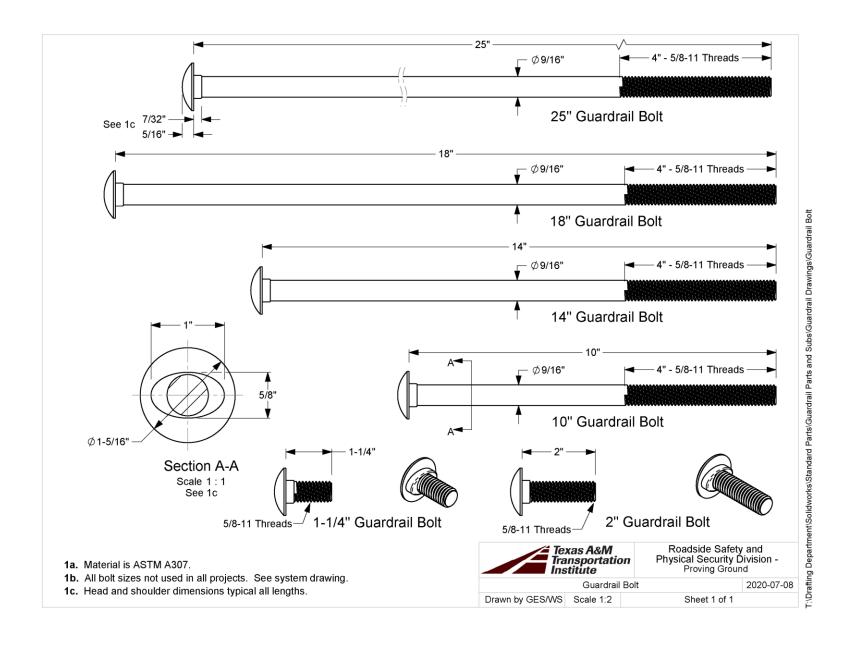
All dimensions except hole diameter are nominal

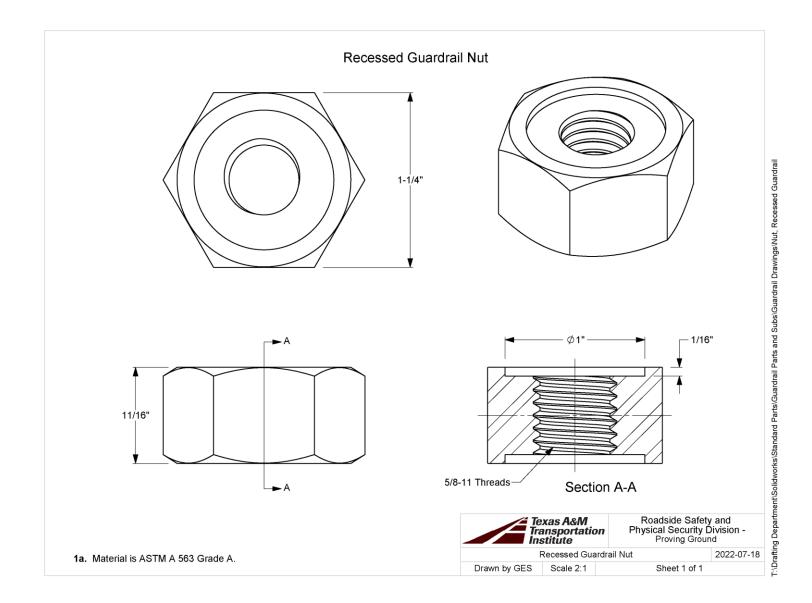
6"
8"
4-1/4"
Section A-A

1a. Timber blockouts are treated with a preservative in accordance with AASHTO M 133 after all cutting and drilling.

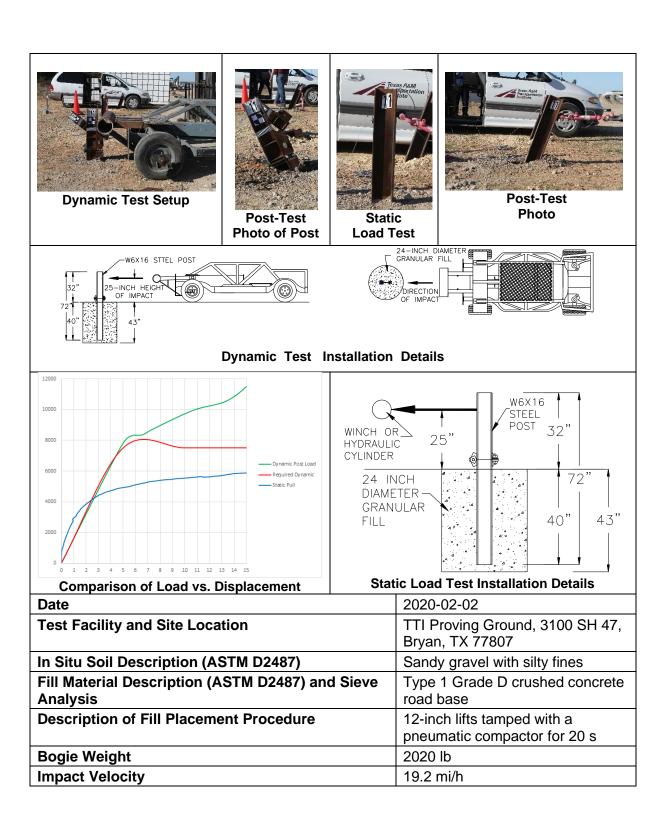
Roadside Safety and Physical Security Division -Proving Ground


Timber Blockout, for W-section Post


2022-12-16


Drawn by GES

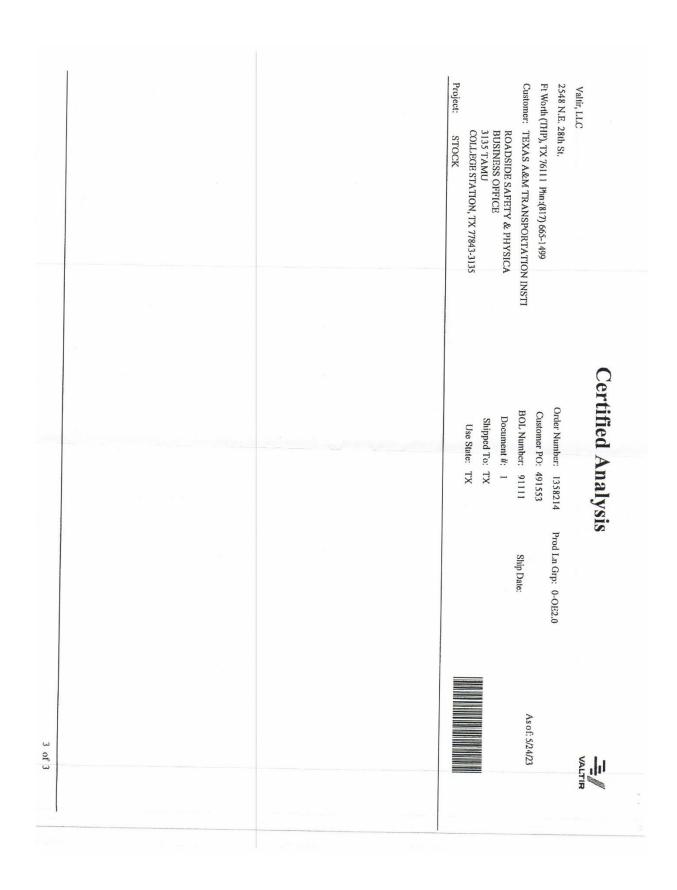
Scale 1:3


Sheet 1 of 1

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

Soil Strength Performance Test *MASH*, Appendix B

Project Number: _	491534-01-1					
Date of Crash Test:	2023-09-19					
Post No. 1 of	f 2 Fill Moisture:	NA% Native Moist	ure: <u>NA%</u>			
Temperature:	° _F Humid	lity:78%_				
File Name:52						
Displacement (in.)	*Pull Force (Lbf)	Minimum Force (Lbf)	Pass / Fail			
5 9300 3940 P						
10	9800	5500	Р			
15	9600	6540	Р			
Do not exceed 10,0	00 lbf					
Test Post 15 Location:		☑ North of terminal pos West of terminal pos				
Performed by: Ed,	Matt, Ken	Date: _202	23-09-19			


Soil Strength Performance Test *MASH*, Appendix B

Project Number: _	491534-01-2									
Date of Crash Test:	2023-10-06									
Post No. 1 of	F _2 Fill Moisture:	NA% Native Moist	ure: NA%							
Temperature:	73_ ° _F Humid	lity:82%_								
File Name: <u>SoilSt</u>	File Name: SoilStrength_58.ASC									
Displacement (in.)	*Pull Force (Lbf)	Minimum Force (Lbf)	Pass / Fail							
5 7400 3940 P										
10	8800	5500	Р							
15	10,000	6540	Р							
Do not exceed 10,0	00 lbf									
Test Post 1 Location: 33	ft □ South ▷ ft □ East □	☑ North of terminal pos West of terminal pos								
Performed by: Bra	ckin Kochman Robinsor	n Date: 20:	23-10-06							

30 3340G				533G	533 G		30 533G							11G				11G					15 116	_	Project: S7	CO	313	BU	Justomer: TE	t Worth (THP),	2548 N.E. 28th St.	Valtir, LLC	
5/8" GR HEX NUT							6'0 POST/8 S/DDR/7																12/12/6/3/1.5/8		STOCK	COLLEGE STATION, 1X 77843-3135	3135 TAMU	BUSINESS OFFICE	Customer: TEXAS A&M TRANSPORTATION INSTI	Ft Worth (THP), TX 76111 Phn:(817) 665-1499	St.		(
FAST	A-709	A-709	A-709		A-36	7-50						M-180			M-180	M-180	M-180		M-180	M-180	M-180	M-180		Spec		35		A	ON INSTI				16(13)
							A 2		A 2	A 2		A 2	A 2	2	A 2	A 2	A 2	2		A 2	A 2	A 2	2	CL TY									
23-35-001	59110732	59110730	59110729	VF1923B	2104723	1114803	277542	277541	277540	277506	2122872	2122872	2122871	F13222	277541	277540	277506	F13122	AA8112	AA8110	AA8108	AA8107	F11823	CL TY Heat Code/Heat		Us	Ship	Docu	BOL	Custo	Order]		Certified Analysis
	58,972	59,045	58,770		54,000	34,300	61,872	61,280	59,744	65,000	61,000	50,800	58,100		61,280	59,744	65,000		62,800	62.400	56,700	59,700		Yield		Use State: TX	Shipped To: TX	Document #: 1	BOL Number: 91111	Customer PO: 491553	Order Number: 1358214		d Analy
,	73,363	72,898	71,691		66,200	67,500	79,516	79,207	76,903	84,374	83,300	74,300	81,100		79,207	76,903	84,374		84.400	86.800	80,000	86,800	and the factor was the feet of	TS									ysis
	0.080	0.090	22.7 0.070		26.0 0.0708	28.3 0.070	25.8 0.200	25.9 0.190	26.9 0.180	24.3 0.200	,999.0 0.220	26.0 0.220	23.0 0.210			26.9 0.180	24.3 0.200	0.00	23.0 0.210	000 000		21.0 0.210		Elg C					Ship Date:		Prod Ln Grp: 0-OE2.0		
	0.950 0.013 0.021 0.220 0.029	0.860 0.012 0.024 0.220 0.250	0.840 0.011 0.031 0.220 0.260		26.0 0.070 80.000 0.013 0.020 0.200 0.100 0.014 0.040 0.002	28.3 0.070 0.840 0.007 0.022 0.230 0.130 0.015 0.040 0.002	0.760 0.009 0.005 0.010 0.100	0.730 0.010 0.002 0.020 0.100	0.740 0.010 0.004 0.010 0.100	0.790 0.016 0.004 0.010 0.120	0.790 0.009 0.002 0.030 0.080	0.790 0.009 0.002 0.030 0.080	0.750 0.009 0.003 0.020 0.070				0.790 0.016 0.004 0.010 0.120	0.120 0.000 0.002 0.030 0.120				0.490 0.007 0.001 0.020 0.013		Mn P							OE2.0		
** 0.220 0.02	21 0 220 0 029	24 0.220 0.250	31 0.220 0.260		0 0.200 0.100	2 0.230 0.130	05 0.010 0.100	02 0.020 0.100	04 0.010 0.10	04 0.010 0.12	02 0.030 0.08	02 0.030 0.08	103 0.020 0.07	0.000	02 0 020 0 10	104 0.010 0.10	104 0.010 0.12	0,030 0,12	0.020 0.11	0.00 0.00	000 000 010	0.020 0.01	1	s SI Cr									
0.001.0.150 0.001			0.013 0.014 0.001		0.014 0.040 (0.015 0.040	0 0.000 0.050 0.001		0 0.001 0.050 0.002			0 0.001 0.040 0.003	0 0.002 0.040 0.003				0 0.000 0.080 0.001	0.000 0.080 0.003				0.000 0.090 0.002	0.0	C. C.					The state of the s	Asof: 5/24/23		5	1.
100.0	0.001	0 001	0.001		0.002	0.002	0.001	0.001	0.002	0,001	0.003	0.003	0.003	100.0	0.001	0.002	0.001	0.003	200.0	200.0	0 000	0.002	111	ζ,								VALTIR	

2023-12-18

Commission Expires: State of Texas, County of Tarrant. Sworn and subscribed before me this 24th day of May, 2023. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING WASHERS COMPLY WITH ASTMF-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTMF-2329, UNLESS NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS) ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS) ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410. Upon delivery, all materials subject to Valtir, LLC Storage Stain Policy QMS-LQ-002. Project: Notary Public: STRENGTH - 46000 LB ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635,410. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED. Ft Worth (THP), TX 76111 Phn:(817) 665-1499 2548 N.E. 28th St. Customer: TEXAS A&M TRANSPORTATION INSTI Valtir, LLC Oty 30 30 3500G Part # 4075B WD BLK 6X8X14 3135 TAMU BUSINESS OFFICE ROADSIDE SAFETY & PHYSICA COLLEGE STATION, TX 77843-3135 STOCK 5/8"X10" GR BOLT A307 Description Comm. Expires 03-16-2027 Notary Public, State of Texas MARIANA GISELA SALINAS Notary ID 134255660 A307-3500G WOOD Spec CL TY Heat Code/ Heat 22-924 **Certified Analysis** Order Number: 1358214 BOL Number: 91111 Customer PO: 491553 Document #: 1 Shipped To: TX Use State: TX Yield ST Prod Ln Grp: 0-OE2.0 Ship Date: Elg C Quality Assurance Mn Certified By: т S 50 Cu As of: 5/24/23 Ch N Cr of 3 Vn

2023-12-18

APPENDIX C. MASH TEST 3-10 (CRASH TEST 491534-01-1)

C.1. VEHICLE PROPERTIES AND INFORMATION

Date:	2023-09-19	Test No.:	491534-01-1	VIN No.:	13NCN7APOJL814904
Year:	2018	Make:	Nissan	Model:	Versa
Tire Inf	lation Pressure:	36 PSI	Odometer: <u>122162</u>		Tire Size: <u>P185/65R15</u>
Describ	oe any damage to	the vehicle pric	or to test: None		
• Dend	otes acceleromet	er location.			
NOTES	S: None		- A M		• N T
			_		
Engine Engine			_		
Transm	nission Type: Auto or	Manual		→	
_	FWD <u>L</u> RW al Equipment:	/D <u>Ll</u> 4WD			
Dummy Type: Mass: Seat F	50th Pe	ercentile Male Γ SIDE	- - -	——H——————————————————————————————————	D — K
Geome	etry: inches				C
A <u>66.7</u>	<u>0</u> F	32.50	K <u>12.50</u>	P <u>4.50</u>	U <u>15.50</u>
B <u>59.6</u>	<u>0</u> G	0.00	L <u>26.00</u>	Q <u>24.0</u> 0	0 V <u>21.25</u>
C 175.	40 H	41.24	M 58.30	R 16.2	5 W 41.00
D 40.5	0 I	7.00	N 58.50	S 7.50	X 79.75
E 102.	40 J	22.50	O 30.50	T <u>64.5</u> 0	<u></u>
Whe	eel Center Ht Fro	nt 11.50	Wheel Center I	Ht Rear 11.50	W-H -0.24
RA	NGE LIMIT: A = 65 ±3 inch	es; C = 169 ±8 inches; E (M+N)/2 = 59 ±2	= 98 \pm 5 inches; F = 35 \pm 4 inches; inches; W-H < 2 inches or use MA:	H = 39 ±4 inches; O i SH Paragraph A4.3.2	(Top of Radiator Support) = 28 ±4 inches
GVWR	Ratings:	Mass: lb	<u>Curb</u>	<u>Test I</u>	nertial Gross Static
Front	1750	M_{front}	1440	1459	<u>1544</u>
Back	1687	M_{rear}	778	984	1064
Total	3389	M _{Total}	2218	2443	<u>2608</u>
11aaa -	Niedwijk retie er		Allowable TIM =	2420 lb ±55 lb Allow	able GSM = 2585 lb ± 55 lb
lb	Distribution:	LF: <u>740</u>	RF: <u>719</u>	LR: <u>482</u>	2 RR: <u>502</u>

Figure C.1. Vehicle Properties for Test 491534-01-1.

Date:	2023-09-19	Test No.:	491534-01-1	VIN No.:	3N1CN7APOJL814904
Year:	2018	_ Make:	Nissan	_ Model:	Versa

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable				
End Damage	Side Damage				
Undeformed end width	Bowing: B1 X1				
Corner shift: A1	B2 X2				
A2					
End shift at frame (CDC)	Bowing constant				
(check one)	X1+X2				
< 4 inches	=				
≥ 4 inches					

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

g :g		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	±D
1	AT FRONT BUMPER	9	6	24	-	-	-	-	-	-	+16
2	ABOVE FT BUMPER	22	10	46	-	-	-	-	-	-	52
	Measurements recorded										
	inches or mm										

¹Table taken from National Accident Sampling System (NASS).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure C.2. Exterior Crush Measurements for Test 491534-01-1.

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

^{***}Measure and document on the vehicle diagram the location of the maximum crush.

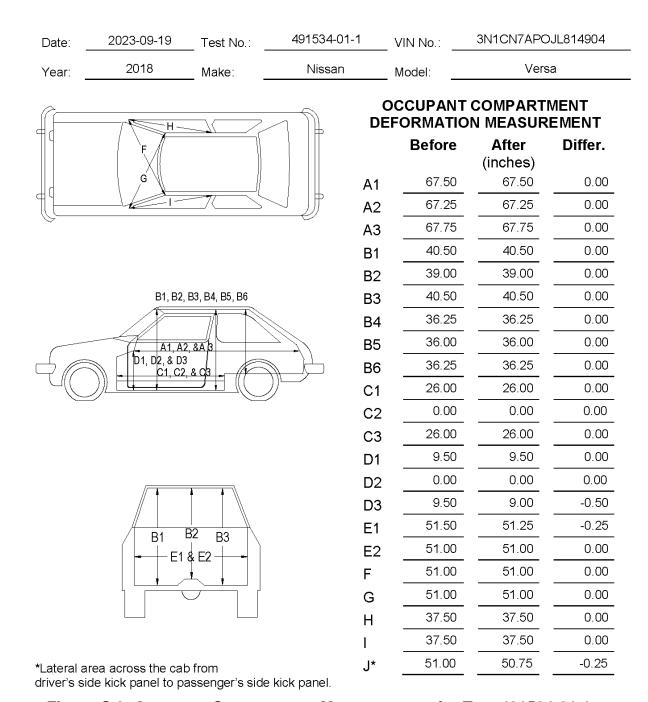


Figure C.3. Occupant Compartment Measurements for Test 491534-01-1.

C.2. SEQUENTIAL PHOTOGRAPHS

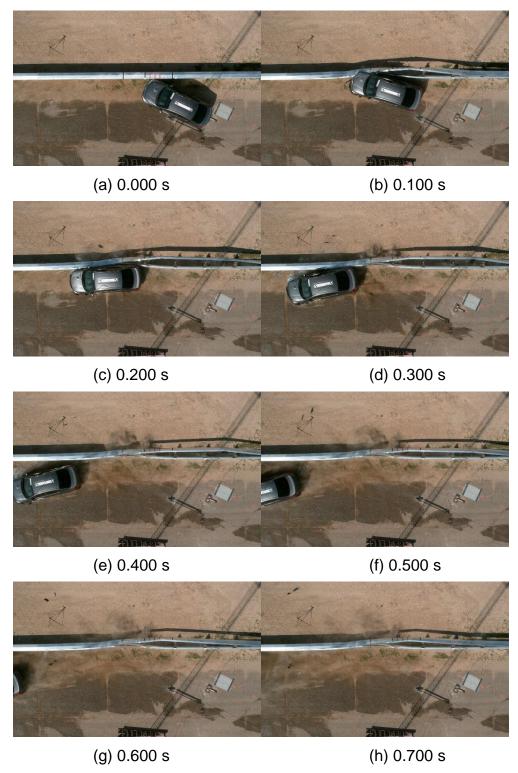


Figure C.4. Sequential Photographs for Test 491534-01-1 (Overhead Views).

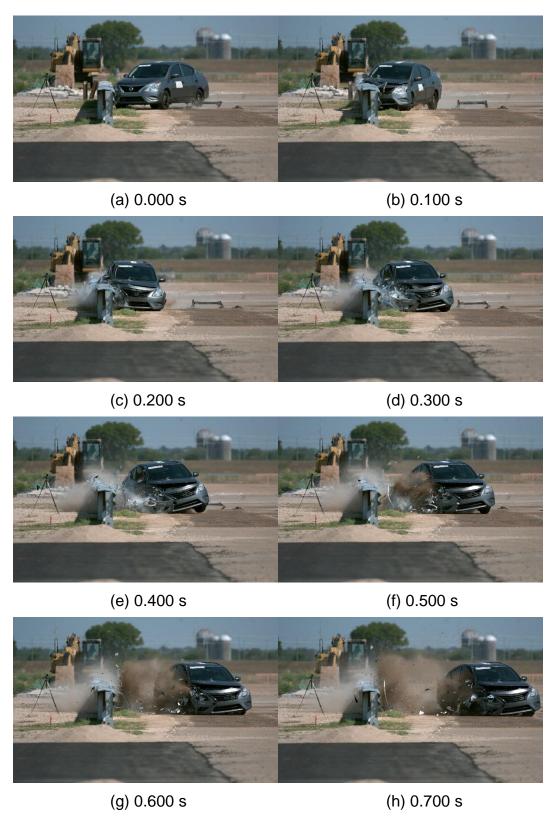


Figure C.5. Sequential Photographs for Test 491534-01-1 (Frontal Views).

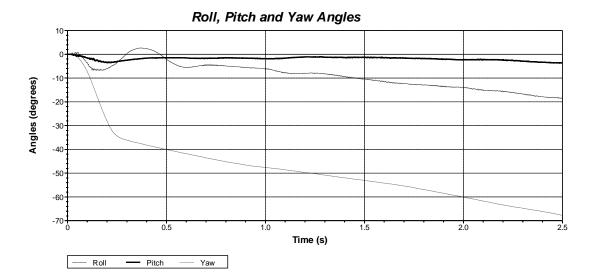



Figure C.6. Sequential Photographs for Test 491534-01-1 (Rear Views).

C.3. **VEHICLE ANGULAR DISPLACEMENTS**

Axes are vehicle-fixed. Sequence for determining orientation:

- 1. Yaw.
- 2. Pitch.
- 3. Roll.

Test Number: 491534-01-1

Test Standard Test Number: MASH Test 3-10 Test Article: Enhanced Motorcycle MGS Test Vehicle: 2018 Nissan Versa

Inertial Mass: 2443 lb Gross Mass: 2608 lb Impact Speed: 61.2 mi/h Impact Angle: 25.5°

Figure C.7. Vehicle Angular Displacements for Test 491534-01-1.

C.4. VEHICLE ACCELERATIONS

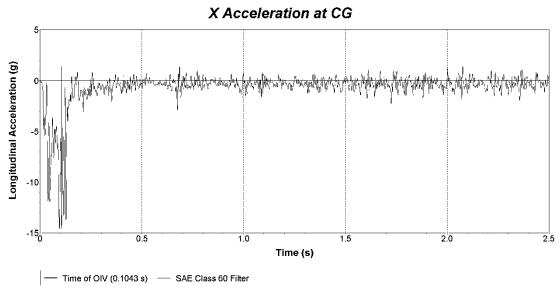


Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test 491534-01-1 (Accelerometer Located at Center of Gravity).

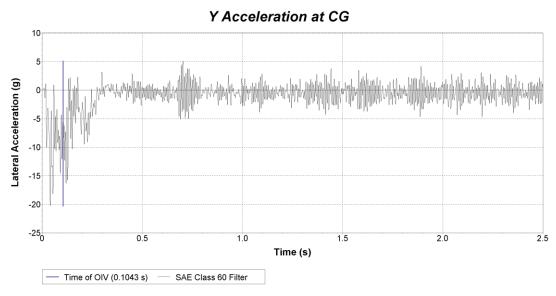


Figure C.9. Vehicle Lateral Accelerometer Trace for Test 491534-01-1 (Accelerometer Located at Center of Gravity).

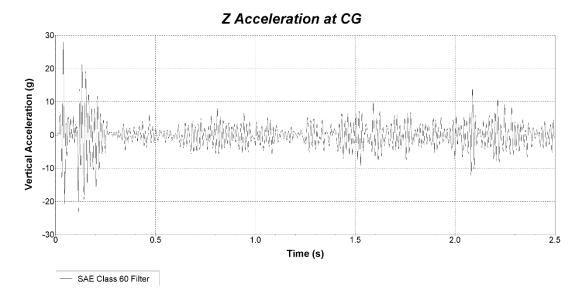


Figure C.10. Vehicle Vertical Accelerometer Trace for Test 491534-01-1 (Accelerometer Located at Center of Gravity).

APPENDIX D. MASH TEST 3-11 (CRASH TEST 491534-01-2)

D.1. VEHICLE PROPERTIES AND INFORMATION

Date:	2023-10-06	Test No.:	4915	34-01-2	_ VIN No.:	1C6RR6	FT4JS	313051
Year:	2018	Make:	R	AM	_ Model:		1500	
Tire Size:	265/70 R	17		Tire	Inflation Pre	essure:	35	psi
Tread Typ	e: <u>Highway</u>				Odo	meter: <u>11468</u>	9	
Note any	damage to the	vehicle prior to	test: No	ne				
• Denotes	s acceleromete	er location.			x	•		
NOTES:	None		- 1 🕇		711			1
Engine Ty Engine Cl			A M	IEEL ACK				N T
Transmiss Au FV		☐ Manual D ☐ 4WD)	← Q	*	— TEST IN	ERTIAL C. M.	
Optional E None	Equipment:		_	P	3		<u></u>	
Dummy D Type: Mass: Seat Pos			_ 	I F	U H H	UV S	- D-	→ K L
Geometry	/: inches		_	4	M FRONT	,	M REAR	
_	78.50 F	40.00	K	20.00	Р	- c — 3.00	U	→ 26.75
В	74.00 G	28.62		30.00	_	30.50	٧ .	30.25
C 2	27.50 H	61.13	M	68.50	_ R _	18.00	W	61.00
D	44.00	11.75	_ N _	68.00	_ s _	13.00	Х	79.00
	40.50 J	27.00	_	46.00	_ T _	77.00		
Heigh	Center	14.75 c	Wheel W learance (Fror	nt)	6.00	Bottom Frame Height - Fron	t	12.50
Heigh	Center nt Rear		Wheel W Clearance (Rea	ar)	9.25	Bottom Frame Height - Rea	r	22.50
	A=78 ±2 inches; C=23							
GVWR Ra	3700	Mass: lb	' <u>C</u>	<u>urb</u> 2921	rest	<u>Inertial</u> 2838	<u>G10</u>	ss Static 2838
Front Back	3900	M _{front} M _{rear}		2054		2186		2186
Total	6700	IVIrear M _{Total}		4975		5024		5024
	-	IVIIOTAI			Range for TIM and	I GSM = 5000 lb ±110 lb) ——	
Mass Dist		F: <u>1391</u>	RF: _	1447	LR:	1128 F	RR:	1058

Figure D.1. Vehicle Properties for Test 491534-01-2.

Date:	2023-10-06	Test No.:	491534-01-2	VIN No.:	1C6RR6FT4JS313051
Year:	2018	Make:	RAM	Model:	1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2 _
< 4 inches	
≥ 4 inches	

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

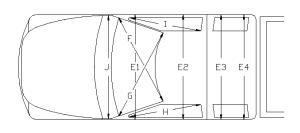
G		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C_2	C ₃	C ₄	C5	C_6	±D
1	AT FRONT BUMPER	18	12	32	-	-	-	-	-	-	+14
2	SAME	18	11	62	-	-	-	-	-	-	73
	Measurements recorded										
	inches or mm										

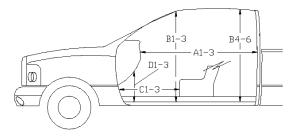
¹Table taken from National Accident Sampling System (NASS).

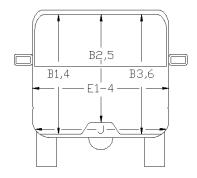
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure D.2. Exterior Crush Measurements for Test 491534-01-2.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.

 Date:
 2023-10-06
 Test No.:
 491534-01-2
 VIN No.:
 1C6RR6FT4JS313051

 Year:
 2018
 Make:
 RAM
 Model:
 1500

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

5 2.	Before	After	Differ.	
		(inches)		
A1	65.00	65.00	0.00	
A2	63.00	63.00	0.00	
АЗ	65.50	65.50	0.00	
B1	45.00	45.00	0.00	
B2	38.00	38.00	0.00	
В3	45.00	45.00	0.00	
B4	39.50	39.50	0.00	
B5	43.00	43.00	0.00	
B6	39.50	39.50	0.00	
C1	26.00	26.00	0.00	
C2	0.00	0.00	0.00	
С3	26.00	26.00	0.00	
D1	11.00	11.00	0.00	
D2	0.00	0.00	0.00	
D3	11.50	11.50	0.00	
E1	58.50	58.50	0.00	
E2	63.50	63.50	0.00	
E3	63.50	63.50	0.00	
E4	63.50	63.50	0.00	
F	59.00	59.00	0.00	
G	59.00	59.00	0.00	
Н	37.50	37.50	0.00	
1	37.50	37.50	0.00	
J*	25.00	25.00	0.00	

Figure D.3. Occupant Compartment Measurements for Test 491534-01-2.

D.2. SEQUENTIAL PHOTOGRAPHS

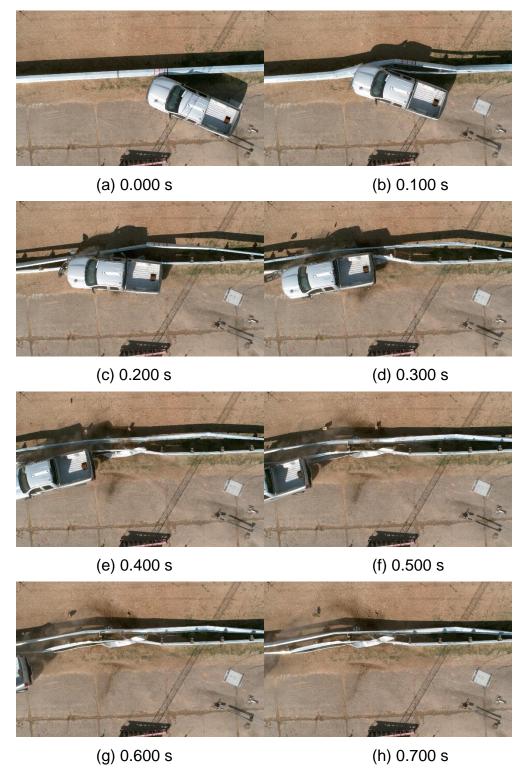


Figure D.4. Sequential Photographs for Test 491534-01-2 (Overhead Views).

Figure D.5. Sequential Photographs for Test 491534-01-2 (Frontal Views).

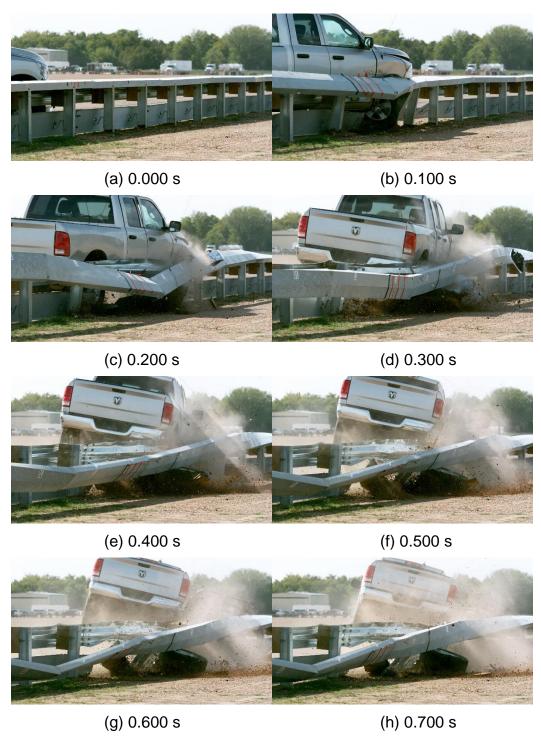
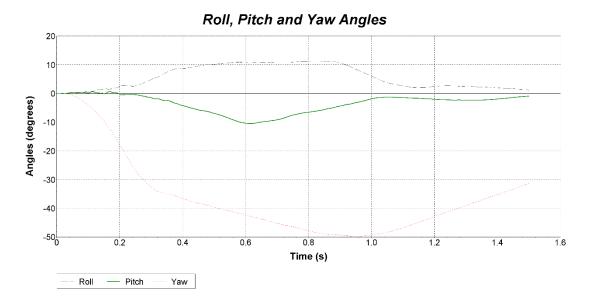



Figure D.6. Sequential Photographs for Test 491534-01-2 (Rear Views).

D.3. **VEHICLE ANGULAR DISPLACEMENTS**

Axes are vehicle-fixed. Sequence for determining orientation:

- 4. 5.
- 6.

Test Number: 491534-01-2

Test Standard Test Number: MASH Test 3-11 Test Article: Enhanced Motorcycle MGS Test

Vehicle: 2018 RAM 1500 Inertial Mass: 5024 lb Gross Mass: 5024 lb Impact Speed: 63.1 mi/h Impact Angle: 25.5°

Figure D.7. Vehicle Angular Displacements for Test 491534-01-2.

D.4. VEHICLE ACCELERATIONS

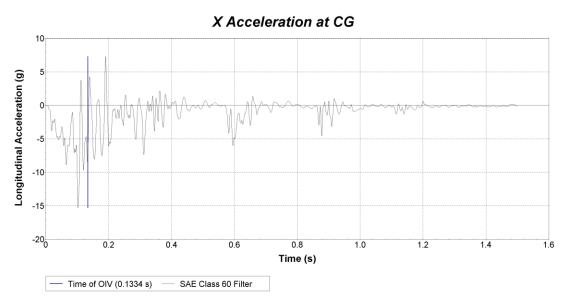


Figure D.8. Vehicle Longitudinal Accelerometer Trace for Test 491534-01-2 (Accelerometer Located at Center of Gravity).

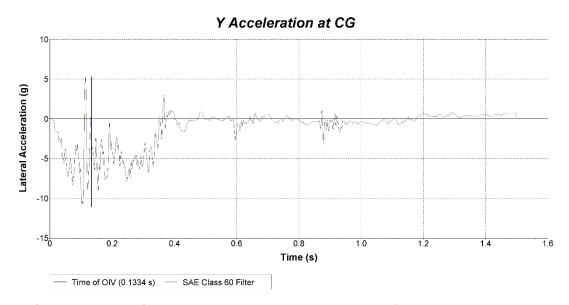


Figure D.9. Vehicle Lateral Accelerometer Trace for Test 491534-01-2 (Accelerometer Located at Center of Gravity).

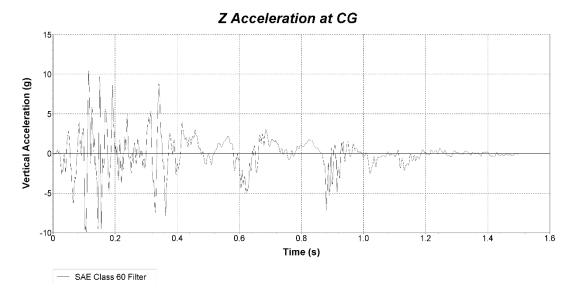


Figure D.10. Vehicle Vertical Accelerometer Trace for Test 491534-01-2 (Accelerometer Located at Center of Gravity).